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SCOPE

Process control systems inevitably include adjust-
able controller settings that facilitate process opera-
tion over a wide range of conditions. Typically, con-
troller settings are tuned after the control system has
been installed using time-consuming, trial-and-error
procedures. If process conditions change significantly,
then the controller must be retuned in order to obtain
satisfactory control.

In recent years, there has been extensive interest in
adaptive control systems that automatically adjust the
controller settings to compensate for unanticipated
changes in the process or the environment. Adaptive
control schemes provide systematic, flexible ap-
proaches for dealing with uncertainties, nonlinearities,
and time-varying process parameters. Consequently,
adaptive control systems offer significant potential
benefits for difficult process control problems where
the process is poorly understood and/or changes in
unpredictable ways. The practical benefits of adaptive
control have been documented in a wide variety of suc-
cessful industrial applications.

Although adaptive control has been a reputable re-
search area for about thirty years, it is only in the last
decade that it has achieved prominence as one of the
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most active areas in the field of control engineering.
Current, extensive efforts in adaptive control are due to
two developments:

1. Significant progress in control theory and the
development of practical adaptive control algorithms.

2. Breakthroughs in microelectronics that have
made it possible to implement adaptive control
schemes in a simple and inexpensive manner.

This survey article on adaptive control is intended
both as a tutorial for the nonspecialist and as a critical
evaluation of existing design techniques. Emphasis is
placed on fundamental concepts and alternative design
strategies rather than detailed derivations and mathe-
matical rigor. Three popular design strategies for
adaptive controllers are considered in detail: self-tun-
ing controllers, stability-based methods (e.g., model
reference adaptive control), and pole placement tech-
niques. Potential operating probiems associated with
current adaptive control schemes are also considered.
Since many adaptive control schemes are based on
identifying a process model on-line, a critical review of
recursive parameter estimation techniques is also in-
cluded.
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CONCLUSIONS AND SIGNIFICANCE

During the past decade, impressive progress has
been made in the theory and application of adaptive
control. Design techniques based on cost function mini-
mization, pole assignment, and stability theory have
reached a mature state of development. A great deal of
practical experience has been gained with adaptive
control systems in both simulation and experimental
studies. As indicated in Tables 2 to 4, a significant num-
ber of industrial applications have already been re-
ported and commercial adaptive controllers are now
available.

Adaptive control strategies provide a promising ap-
proach for poorly understood processes and for pro-

cesses with nonlinear behavior and time-varying dy-
namics. However, in order for adaptive control systems
to have a major impact on industrial practice, two key
problems need to be resolved:

1. The adaptive controllers must be robust enough
to perform well over a wide range of conditions.

2. They should be easy for nonexperts to use. In
particular, the user should only have to specify a mini-
mal amount of information concerning numerical values
of design parameters, desired closed-loop response
characteristics, and similar requirements.

If these two problems can be resoived, adaptive
control will have a very promising future.

Introduction

The early development of adaptive control strategies was
motivated by the design of autopilots for high-performance air-
craft and rockets. Since the response characteristics of these air-
craft varied significantly during flight conditions, classical
linear controllers with constant controller parameters did not
always provide satisfactory control. Consequently, considerable
research activity during the 1950°s was concerned with develop-
ing self-adaptive systems that would automatically adjust to
changing flight conditions (Gregory, 1959). These early efforts
were largely unsuccessful and have been characterized as hav-
ing “... alot of enthusiasm, bad hardware, and nonexisting the-
ory” (Astrdm, 1983). During the 1960's, design strategies for
adaptive control were placed on a more secure theoretical basis
by the introduction of modern control concepts, especially those
from stability theory.

Renewed interest in adaptive control occurred in the 1970
due to significant theoretical developments such as self-tuning
control systems (Astrém and Wittenmark, 1973; Clarke and
Gawthrop, 1975) and the widespread availability of inexpensive
digital control hardware (e.g., microprocessor-based systems.)
In recent years, general purpose, adaptive control systems have
appeared as commercial products in Europe, Japan, and North
America (Hoopes et al., 1983; Kraus and Myron, 1984; Bengts-
son and Egardt, 1984). Special-purpose systems for specific
applications such as cement kilns are also available (Lohja
Corp., 1982).

Before launching into a more detailed discussion of adaptive
control techniques, it would seem advisable to clarify what is
meant by adaptive contrel. It is somewhat surprising that
despite the thousands of papers that have been published on
adaptive control, there is no general consensus on a formal defi-
nition for the term. Early controversies concerning alternative
definitions have been described by Jacobs (1981). For our pur-
poses, we will forego a formal definition and simply regard an
adaptive control system as one that automatically adjusts the
controller settings to accommodate changes in the process to be
controlled or its environment.
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It is convenient to distinguish between two general categories
of adaptive control problems. The first category consists of prob-
lems where the process changes cannot be directly measured or
anticipated. Most of the adaptive control literature has empha-
sized this type of problem. The second category consists of con-
trol problems where process changes can be anticipated or
inferred from process measurements. In these situations, if the
process is reasonably well understood, it is feasibie to adjust the
controller settings in a predetermined manner as process condi-
tions change. For example, a *“table look-up” approach could be
adopted where different sets of controller constants are stored
for a variety of different operating conditions. Thus, if a grade
change were made or if the process throughput were changed, a
new set of controller constants would be used. A simple strategy
for control problems where the process gain K, varies in a known
or measurable manner is to maintain the product K K, constant,
where K, is the controller gain. In principle, this approach will
maintain an adequate margin of stability despite variations in
the process gain.

These two examplies have illustrated a simple type of adaptive
control strategy referred to as gain scheduling. The term is used
because this approach was initially used to accommodate
changes in the process gain only (Astrém, 1983). Gain schedul-
ing has been very effective in a variety of industrial applications,
especially pH control (Shinskey, 1979). In recent years, digital
controllers with gain scheduling options have become commer-
cially available (Andreiev, 1981). However, this approach is
limited by the need to relate process changes to variables that
can be measured on-line. Furthermore, the simple gain schedul-
ing approach of keeping X, X, constant may result in poor con-
trol unless the process dynamics are also considered. For exam-
ple, if the process contains a long time-delay, standard gain
scheduling may be worse than conventional PID (proportional-
integral-derivative) control unless some type of time delay com-
pensation is employed (Wong and Seborg, 1985a).

The remainder of this paper is concerned with adaptive con-
trol strategies for the more difficult class of problems where pro-
cess changes are unpredictable and cannot be directly inferred
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from process measurements. The wide variety of adaptive con-
trol techniques that have been developed for this class of prob-
lems can be conveniently (but somewhat arbitrarily) divided
into four categories:

1. Adaptive controllers designed using a quadratic cost func-
tion (e.g., self-tuning regulators and controllers).

2. Design methods based on stability theory (e.g., model ref-
erence adaptive control).

3. Pole-zero assignment techniques (e.g., Vogel-Edgar ap-
proach).

4. Miscellaneous approaches.

These techniques will be described in detail and critically
evaluated later in separate sections of the paper. However, it
should be emphasized here that the delineations between the
four categories are not as clear-cut as may first appear. For
example, recent research has demonstrated that although self-
tuning controllers and model reference adaptive control have
been developed from different design viewpoints, the techniques
are closely interrclated (Egardt, 1980; Shah and Fisher, 1980;
Landau, 1982; Ljung and Landau, 1978). They may also be
analyzed from a unified theoretical framework (Egardt, 1980;
Goodwin and Sin, 1984).

Self-tuning control

A general strategy for designing adaptive control systems is to
estimate model parameters on-line and then adjust the con-
troller settings based on the current parameter estimates. This
approach is often referred to as self-tuning control and was first
proposed by Kalman (1958). A block diagram of a self-tuning
control system is shown in Figure 1. At each sampling instant
the parameters in an assumed dynamic model are estimated
recursively from input-output data and the controller settings
are then updated. The self-tuning approach has received more
attention than any other adaptive control strategy during the
past decade. In particular, it provides the basis for the self-tun-
ing regulator (Astr8m and Wittenmark, 1973), the self-tuning
controller (Clarke and Gawthrop, 1975), and the pole place-
ment techniques to be discussed later in this paper.

The self-tuning control configuration in Figure 1 is flexible
enough to accommodate a wide variety of parameter estimation
techniques and controller design strategies. Typically, the dy-

Parameter
Estimates

namic model is assumed to be a linear difference equation model
with constant parameters. Recursive least squares and extended
least squares approaches have been the most widely used param-
eter estimation techniques, but recursive versions of other meth-
ods such as maximum likelibood and instrumental variables
have aiso received attention (Astrém et al., 1977; Isermann,
1982).

In self-tuning control systems the controller is typically
designed either to minimize a quadratic cost function or to place
the poles (and perhaps zeros) of the closed-loop system at
desired locations. But other control design methods such as
deadbeat control can also be utilized (Isermann, 1981; 1982). In
general, self-tuning control systems do not have the classical
PID structure; however, several self-tuning PID controllers have
recently been proposed (Wittenmark, 1979; Wittenmark and
Astrom, 1980; Banyisz and Keviczky, 1982; Gawthrop, 1982a;
Cameron and Seborg, 1983) and at least one is commercially
available (Hoopes et al., 1983; Hawk, 1983).

Classification of design methods

It is convenient to classify self-tuning control technigues into
two general classes: explicit or indirect methods, and implicit or
direct methods. In the explicit approach a process model is
employed and the control caiculations are based on the esti-
mated model parameters. This is also referred to as an indirect
approach because the model parameters do not directly appear
in the control law. In the implicit or direct approach, the original
process model is converted to a predictive form that allows the
future process output to be predicted from current and past val-
ues of the input and output variables. By using a predictive mod-
el, the control calculations are climinated since the model
parameters are also used as the control law parameters. This
approach is referred to as a direct method because the control
law parameters are directly updated from input-output data. It
is also referred to as an implicit method because the process
model is implicitly included in the control law. The above classi-
fication scheme is convenient but somewhat arbitrary, since it
has been demonstrated (Narendra and Valavani, 1979) that for
a particular parameterization of the process model, both direct
and indirect methods result in identical equations.

Table 1 provides an overview of the literature on adaptive
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Table 1.  An Overview of Recent Adaptive Control Literature

Tutorial Articles General References
Astrém (1980a,b; 1983) Anderson and Ljung (1984)
Bélanger (1982) Astrdm (1982)

Clarke (1981a,b; 1984) Goodwin and Sin (1984)
Isermann (1982) Harris and Billings (1981)
Jacobs (1981) Landau (1979)
Wellstead and Zanker Unbehauen (1980)

(1982)
Wittenmark and Astrm

(1984)

Survey Articles

Bibliography on adaptive contral: Asher et al. (1976)

Applications of adaptive control: Parks et al. (1980)

Self-tuning control systems: Astrdm et al. (1977); Wittenmark
(1975); Astrdm (1983)

Model reference adaptive control: Landau (1974); Narendra and
Peterson (1980)

Conference Proceedings

IEEE Conf. on Applications of Adaptive and Multivariable Con-
trol, Hull, England (1982)

IFAC Workshop on Adaptive Systems in Control and Signal
Processing, San Francisco (1983)

Yale University Workshops on Applications of Adaptive Systems
Theory (1979, 1981, 1983, 1985)

IFAC Workshop on Adaptive Control of Chemical Processes,
Frankfurt, West Germany (1985)

control. Excelient tutorial articles are available (Jacobs, 1981;
Clarke, 1981a, b, 1984; Astrom, 1980a, b, 1983; Bélanger,
1982; Wellstead and Zanker, 1982; and Isermann, 1982). Three
publications are especially recommended because they provide
an overview of current design methods and representative appli-
cations: Harris and Billings (1981), Astrém (1982), and Ander-
son and Ljung (1984). Landau (1979) describes developments
in model reference adaptive contrel through 1977. Goodwin and
Sin (1984) provide a unified treatment of the adaptive control
field. Applications of adaptive control techniques have been sur-
veyed by Parks et al. (1980). Current research efforts are
described in the proceedings of several recent conferences on
adaptive control, shown in Table 1.

On-Line Parameter Estimation

Adaptive control is usually based on simultaneous model
identification and control. Adaptive control is normally em-
ployed when the actual process is nonlinear and/or high-order;
approximate models, usually linear and low-order, must be
employed for the purposes of implementation. Use of an approx-
imate model is a practical approach because appropriate con-
troliers for nonlinear, stochastic processes are not easily calcu-
lated in real time.

This section covers the topics of model selection and on-line
parameter estimation for the purposes of adaptive control. First
we describe the types of models used (linear difference equa-
tions) and the parameterization of these models. Next, algo-
rithms for recursive least squares estimation of model parame-
ters are presented, along with suggested modifications that can
improve the performance of on-line estimators. Operational
experience with such items as covariance resetting, forgetting
factors, use of a perturbation signal, and estimator diagnostics is
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reviewed. Finally, we discuss the extension of recursive estima-
tion to multiple input—~multipie output processes.

Linear difference equation models

Linearization of the process model is a generally accepted
procedure in control theory and thus has been the basis of most
adaptive control algorithms. A typical single input-single out-
put (SISO) model employed in adaptive control is a linear dif-
ference equation, the so-called ARMAX model (autoregressive,
moving average model with auxiliary or exogenous input; see
Goodwin and Sin, 1984; Ljung and Soderstrdm, 1983).

() +ay(t—1) + - - « + a,y(t — n) = bou(t — k)
+bu(t—-k-1+-+-+bu@t—k—m)
+ Ck(D) + it — 1)+ - - - it —nm) +d(D) (1)

where y is the output, u is the input, £ is a stochastic noise vari-
able (random variable with normal distribution and zero mean),
d is the load disturbance variable (usually unmeasured), and ¢ is
a nonnegative integer which denotes the sampling instant, ¢ = 0,
1,2....InEq. 1 nand m are known positive integers, and k is
the known time delay expressed as an integer muitiple of the
sampling period (k = 1). The model parameters, a,, b,, and ¢,
may be unknown. By introducing operator notation, Eq. 1 can be
written more compactly as

A(g™) p(t) = B(gu(t — k) + C(g™ &) + d(t)  (2)

where ¢! is the backward shift operator, g~'y(2) = y(r — 1),
and the A4, B, and C polynomials are defined by

Al@) =1+ ag™

i=1

B(g™") = Z bg™!
i=0

Cig™") = ;;: aq”’

Equations 1 and 2 are linear difference equations which are
referred to as stochastic, discrete-time models. In fact, these
equations provide canonical representations for sampled-data
systems with white noise disturbances (Astrém, 1970). While
the form of the model is linear, in adaptive control the model
coefficients are assumed to be time-varying and are estimated in
real time. Hence, Eq. 1 does not amount to the traditional Tay-
lor series linearization of the true process model (Jacobs, 1981).
In fact, the coefficients are uncertain, which introduces a non-
linear influence into the model. A few studies have been
reported using particular classes of nonlinear models such as bil-
inear models (Svoronos et al., 1981; Balestrino et al., 1984) or
Hammerstein models (Anbumani et al.,, 1981; Lachmann,
1982).

Linear, discrete-time models are preferred for adaptive con-
trol because they lead to algorithms that are readily imple-
mented on a digital computer. As is well known, there is a loss of
information when a continuous process is subjected to the sam-
pling operation. However, this is not a practical difficulty as
long as the sampling time is about one-tenth of the dominant
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time constant (Clarke, 1981b) or s 5 < A? =< Y, t55, Where 25 is
the 95% settling time (Isermann, 1982). The actual choice may
also be influenced by the process time delay, as discussed
below.

Four mode] parameters in Eq. 1 must be specified a priori:
mode] orders 7 and m, time delay k, and sampling period Az. The
selection of difference equation order is somewhat arbitrary,
with n typically chosen to be 2 or 3. Too large a value of n is
undesirable because this requires more computational effort for
on-line parameter estimation. Too small a vaiue of # may not
adequately describe the process dynamics, and underestimating
the model order may cause the parameter estimates to become
unrealistic (Rohrs et al., 1982). The time delay parameter k
depends on the ratio of the time delay 8 to the sampling period
At. In general k should be selected so that k = (8/A7) + 1 (8 = 0
corresponds to k = 1, i.e., the inherent unit delay in discrete sys-
tem representation).

Clearly, the choices of k and At interact. The sampling period
is often chosen so that k has a value of 2 or 3; this tends to reduce
the computational effort of various control algorithms (see the
later section on quadratic cost function design methods). Choos-
ing At to be very small has two disadvantages. First, smali values
of A7 can cause the process model to become nonminimum phase
(Astrdm et al., 1984; Clarke, 1981a, b). In fact, a fractional
time delay leads to a B(g~") polynomial with a zero outside the
unit circle (Gawthrop, 1980a, b; Astrém et al., 1984; Astrém,
1983). Second, if A is very small then the control action tends to
become excessive (Wellstead and Zanker, 1982). On the other
hand, if At is too large the controller may respond too slowly to
load and set-point changes. However, Rohrs et al. (1985) have
demonstrated that slow sampling improves the robustness of the
adaptive controller. It may be advantageous in some cases to
adjust Az on-line (McDermott and Mellichamp, 1983).

If the time delay is unknown or varies significantly, either the
B polynomial can be expanded, or k can be estimated on-line
(Kurz and Goedecke, 1981). If the time delay varies between
known limits, Ky, < k < Ky, the order of the B polynomial
should be increased from m to m + kg, — kg, Any leading
coefficients in B(g™") that are estimated to be zero or near-zero
may signify a change in the time delay. This strategy has been
successfully employed for pole-shifting techniques (Vogel and
Edgar, 1982a, b; Wellstead and Zanker, 1982). Chien et al.
(1983) have proposed a related strategy for a modified version
of the self-tuning controller (STC). However, simulation studies
by Lee and Hang (1985) have shown that this approach can be
sensitive to noise and unmeasured disturbances. It may be nec-
essary to employ special methods such as those discussed in the
later section on modification of recursive least squares estima-
tion in order to obtain satisfactory results for a varying time
delay.

Recursive least squares estimation

The goal in process identification is to infer a model (and esti-
mates of the model parameters) given a data record. This activ-
ity can be carried out in an off-line manner, in which all data are
analyzed at once, or by using on-line techniques, where the addi-
tion of a new data point (or data set) is employed to update the
model parameters. In adaptive control, real-time (or sequential)
updating of the model parameters is more appropriate than
batchwise (nonsequential) processing of the input-output data.
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Algorithms that are suited to real-time usage and are based on
successive updating of the model parameters are called recur-
sive. There are a large number of recursive identification algo-
rithms described in the literature (Ljung and Soderstrom,
1983); the most popular technique is recursive least squares
(RLS).

As a simplification, suppose the noise model parameters, c,,
are set to zero. In this case Eq. 1 can be written in the following
vector form:

yO) =¥t - 1) 00 — 1) + €(t) (3

where (data) the information or regressor vector ¢ and parame-
ter vector f are defined as

V- 1) =y -1,y -2),...ut - n),
uit—k-1),...u(t -k -m-1),1]
07(t — 1) = [ay, 83, ... 8 by, by, . . . by, d].

€(?) represents an error that is assumed to be statistically inde-
pendent of the inputs and outputs.

The parameter estimation problem is to find the estimates (f)
of the unknown parameters (6) which minimize the loss func-
tion

Jie i @) - $))? @

where § is the predicted value of the output based on 8, y is the
actual value, and #, is the number of data points. The estimation
error is y — J. In the least squares method, we choose to mini-
mize what is unexplained by the mode] (the prediction error).
The least squares solution (#) can be obtained by collection and
analysis of all data taken (Clarke, 1981a).

The equations for recursive least squares computation of the
unknown parameters are as follows (Clarke, 1981a; Ljung and
Stderstrdm, 1983):

() =8 -1
+ POt - Dy@) - "¢ - e - 1)1 (5)

where P is called the covariance matrix of the estimation error
[dimension (7 + m + 1) x (n + m + 1)]. P(t) is a positive
definite measure of the estimation error and its elements tend to
decrease as  increases; it is calculated using the recurrence rela-
tionship:

PO)=Pt-1)-Pt-1Dy@-1) -1
cP -1y - D) +117"WT - 1Pt -1) (6)

Equation 6 requires an initial guess for P(0). Using a matrix
inversion lemma, Eq. 6 becomes

P(t - 1Y)
KO =0 oPe - hvo ™
P@) = U - KW OIP(: - 1) ()
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Iis the identity matrix. Equation 5 can be written as
B(e) = b(z = 1) + K@) [y(1) — p(0)] )

where K(t) is a Kalman (feedback) filter gain; this gain multi-
plies the prediction error to yield the correction term for the
model parameter vector. If the noise ¢() has zero mean, the
parameter estimates (9) are unbiased, i.e., E[8] = 0, the true
parameter vector. For white noise (¢, = 1; all other ¢; in Eq. 1
are zero), f is also the minimum variance estimate.

If the system noise e(¢) is not independent but described by a
linear difference equation such as Eq. 1, i.e., ¢; # 0, the esti-
mated values of 0 are no longer unbiased, since y/() in Eq. 3 now
is correlated with y(¢). While biased estimates may not be a
practical problem for high signal-to-noise ratios, significant dif-
ficulties may arise for ratios of 10:1 or less [signal-to-noise ratio
is defined as the ratio of variance of the signal (¢?) to the vari-
ance of the random input disturbance (o%)]. One means of
handling an estimate which contains bias is the instrumental
variable (IV) method (Young, 1970), in which a linear transfor-
mation is used to obtain variables that have uncorrelated residu-
als. If the noise model in Eq. 1 is to be estimated, an alteration in
the recursive least squares procedure must be implemented.
Extended least squares (Clarke, 1981a) utilizes the fact that if
all £(r) were known, recursive least squares could be applied.
Thus this approach is sometimes referred to as pseudolinear
regression, or PLR (Ljung and Stderstrdm, 1983; Goodwin and
Sin, 1984). The values of £(¢) are approximated by estimates of
() (Eq. 3), using current model parameter estimates, 6(¢). This
allows the use of an extended parameter vector of a;, b, and c,.
Convergence cannot be proved for all types of C polynomials,
but this is not a serious practical shortcoming, based on applica-
tions experience. A method that does converge is recursive maxi-
mum likelihood (Astrém et al., 1977; Isermann, 1982), in which
the estimator is based on a nonlinear programming algorithm. A
simpler method which also converges is AML, or approximate
maximum likelihood (Solo, 1979). For a summary of key con-
vergence results in recursive estimation, see Ljung and Soder-
strém (1983) and Goodwin et al. (1984).

In order to simulate Egs. 7, 8, and 9, a suitable choice of P(0)
[and #(0)] must be made. For P(0) a diagonal matrix with large
elements (e.g., 10° or larger) implies that the user’s confidence
in 6(0) is poor, while small values for the diagonal elements
imply that #(0) is a good estimate. Large values of the diagonal
elements of P(0) will cause rapid changes in 8(2) initially, while
small values cause §(¢) to change more slowly (Young, 1969).
Another characteristic of Eqs. 7 and 8 is that the norms of P and
K (IP], Ik]l) tend to zero as more data are processed, meaning
that corrections to # become smaller. This leads to convergence
of the parameters, a desirable result if the parameters are indeed
constant. However, most chemical processes tend to have model
parameters that are at least slowly time-varying. An adaptive
controller/estimator should have the capability to track param-
eter changes even if the estimator has become ill-suited to moni-
tor such changes. This problem of loss of sensitivity (sometimes
referred to as “falling asleep”) is more severe for closed-loop
parameter estimation (estimation under feedback control) than
for open-loop estimation; we discuss this subject more fully in
this section.
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Maodification of recursive least squares estimation

The least squares parameter estimation algorithm can be
modified to maintain its sensitivity to process parameter varia-
tions. Perhaps the most common modification is to weight new
data more heavily than old data. This can be done by including
an exponential weighting factor (called a forgetting factor) in
the performance index:

!

JO@) = 2N [¥TG - 1) 8() — y()])?

i=1

(10)

where A is the exponential weighting factor, 0 <A < 1. When
A = 1 all data are weighted equally (sec Eq. 4). For 0 <A < 1,
more weight is placed on recent measurements than on older
measurements. Following the derivation shown by Young
(1969) for the previous algorithm, the performance index given
by Eq. 10 results in the following recursive least squares algo-
rithm:

P =5 P( — 1) = P4~ D = DIV - D
PG =)yt — 1) + A7 — D P - D] (1D)

) =08(-1
+ Py (r — Dy —¢7¢ - DB - D] (12)

It can be seen from Eq. 11 that the effect of the exponential
weighting factor, A, is to prevent the elements of P from becom-
ing t0o small. This maintains the sensitivity of the algorithm and
allows new data to continue to affect the parameter estimates.
On the other hand, when x and u are close to zero, then
P(t — 1)y(t — 1) — 0,and P(¢) = P(t — 1)/\. Hence P grows
exponentially until ¥ changes. Equation 12 shows how bursts in
6(t) can occur for large P, especially when the set point is
changed or a perturbation signal is introduced. This phenome-
non is known as estimator windup or covariance windup
(Astrom, 1982).

A second modification to improve sensitivity of the parameter
estimates, suggested by Young (1969), is to add a positive defi-
nite matrix, D, to P(t — 1), creating an a priori covariance
matrix, P(t/t — 1), to be used in place of P(z — 1) in Eq. 13.
With this modification, the algorithm given in Eqs. 13 and 14
becomes:

Pt —1)=P(t-1)+D (13)

P(1) =§{P(1/1 - 1) =P/t -1 -1)
[T - DP@/t - DYt - 1) + N
YTt - P/t - 1)) (14)
B(1) =60 - 1) + P(t/t - 1)
Wt = DIy - 70— Db - D] (15)
Equation 15 indicates that addition of D can prevent | P| from

becoming too small. D can be chosen as a diagonal matrix with
the magnitude of the elements depending upon the expected rate
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of variation of the parameters. An analogous technique is covar-
iance resetting (Goodwin et al., 1983; Dumont and Bélanger,
1981), where the covariance matrix is reinitialized as necessary
(i.e., when | P| becomes small). In subsequent discussion of the
use of D, the reader should recognize that these two techniques
are equivalent.

The use of the least squares estimation algorithm is some-
times limited by the numerical accuracy of the particular com-
puter used. This may be a significant problem for microproces-
sor implementation of recursive least squares estimation. Let us
illustrate the problem for a model with a single parameter 8.
Defining 8(¢) to be the parameter error, § — (), Eq. 9 can be
written for this one-dimensional case,

B() = [1 — K(W(N)1B(z — 1) + K(e(r)  (16)

This stochastic difference equation can be come unstable if
11 = K()¥(1)] > 1, or when K(¢)¥(t) becomes negative. This is
tantamount to P (a scalar for the one-dimensional case) becom-
ing negative; in the multidimensional case, P may become indef-
inite due to round-off. Once this happens, the recursive calcu-
lation becomes unstable. Round-off problems may occur after
5,000 to 10,000 iterations with a 32 bit floating-point represen-
tation (Clarke, 1981b). One modification which solves the
numerical instability problem is called square root filtering
(Bierman, 1977), where the covariance matrix is factored as

P(t) = S(®) S™(1) an

where S is an upper-triangular matrix called the square root of
P. S(¢) is then incorporated into the algorithm, and S(¢) is
adjusted at each iteration. This ensures that P will be positive
definite. A second technique is to decompose P(¢) into a product
of upper-triangular and diagonal matrices. See Peterka (1975),
Bierman (1976, 1977), and Morris et al. (1981) for more details
on the appropriate equations and computational experience.

Selective updating of certain model parameters is sometimes
necessary for models where m or n is large. In the case of dis-
crete convolution (or impulse response) models, as many as 30
parameters may need to be updated. Asbjornsen (1984) has pro-
posed an estimation algorithm for this case that adjusts only
those parameters which give a significant improvement in the
residual of the model fit. If the improvement is insignificant, the
estimates are not changed.

Potential operating problems of parameter estimation
algorithms

A certain amount of tuning and operational experience with
parameter estimation algorithms is required to make them suc-
cessful, since certain operational problems may occur during
implementation, due to real world conditions. When the con-
trolled process is operating satisfactorily, very little excitation of
the process occurs. As discussed earlier, small model errors can
lead to large parameter changes (see Eq. 12), causing oscillation
in the process variable. Fortunately, such excitation of the sys-
tem will lead to improved estimation, followed by improved con-
trol. Anderson (1985) has shown that bursting phenomena can
result from noise or unmodeled dynamics in the absence of per-
sistent excitation, quite apart from the estimator windup effect.
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Another particularly difficuit problem in estimation occurs
when a set-point change is implemented in a nonlinear system;
an equivalent situation arises when an unmeasured disturbance
suddenly changes. This change in operating point imparts a sud-
den or jump change to the estimated model parameters, as
opposed to the slowly changing parameters normally assumed
(parameter drift). This phenomenon has been observed by many
investigators, e.g., Vogel and Edgar (1982a) and Fortescue et al.
(1981); Figures 2 and 3 (Vogel, 1982) show a typical behavior
pattern for an estimator in an experimental application where a
load change occurred at ¢ = 2.6 min. The large estimation error
gives rise to changes in the model parameters (d, b,, b, and b; in
Figure 3).

There are a number of approaches to deal with such operating
problems, including covariance resetting, variable forgetting
factor, and use of a perturbation signal. The following three sec-
tions discuss these approaches.

Covariance resetting

The performance of a parameter estimation algorithm is a
function of the covariance resetting procedure and the use of the
forgetting factor, A. If D is selected with all elements equal to
zero and A = 1, the algorithm corresponds to the estimation
algorithm given in Egs. 7 and 8, which becomes progressively
more insensitive to parameter changes when the process is oper-
ating satisfactorily. The sensitivity of the algorithm to parame-
ter changes can be improved by selecting A < 1.0 and/or using a
diagonal D with positive elements. Although these strategies
improve the sensitivity of the algorithm, they have two serious
disadvantages. First, if A\ < 1 and/or D # O, the algorithm is
more sensitive to noise, as well as parameter changes, which
causes the parameter estimates to drift erroneously. The quality
of the estimates can be improved if a perturbation signal is
added to the process input, as discussed later.

The second disadvantage is that with A < 1 and for D # 0, the
elements of P may become excessively large with time. This in
turn causes the algorithm to become overly sensitive to parame-
ter changes and noise, resulting in large fluctuations and drift-
ing in the parameter estimates. As mentioned by Astrém and
Wittenmark (1980), the large values of P may also lead to
numerical problems. Through Eq. 16, relatively large finctua-
tions in the process output cause the elements of P to decrease,
but when no disturbances enter the process for some period of
time the elements of P may increase. The rate of increase is a
function of A and the elements of D.

The problems discussed above concerning the performance of
the estimation algorithm have been observed in both simulation
and experimental applications (Vogel and Edgar, 1982a;
Clough et al., 1983). It is apparent that simply selecting con-
stant values for A and D will yield unsatisfactory performance
for one reason or another. For the purposes of adaptive control,
Vogel (1982) found the best performance for A = 1and D = 0.

However, certain conditions may arise when a nonzero D
should be added. Vogel (1982) and Goodwin and Teoh (1983)
found that the occurrence of a parameter change requiring a
change in A or covariance resetting can be determined by observ-
ing the estimation error, y(#) — (1), i.e., A is kept equal to 1
and the covariance is reset using D in Eq. 15 only if the absolute
value of the estimation error exceeds a user-specified limit. This
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Figure 2. Absolute value of estimation error for adaptive controller applied to the cooling water control loop.

limit should be as small as possible and yet still be larger than
the fiuctuations due to noise. The addition of a nonzero D
increases the elements of P, which allows the parameter esti-
mates to change. Since D # 0 is added only at a specific time,
the elements of the P matrix will again become small with time.
There is an optimum resetting interval for drifting parameters
(Goodwin and Teoh, 1983); the nonzero D should not be added
too frequently since it will cause unnecessary parameter esti-
mate fluctuations and possibly lead to the other problems dis-
cussed above. Too-frequent covariance resetting may be avoided
by examining the size of the elements of P and adding D only if
the elements of P are small. If the elements are not small, addi-
tion of D is not necessary anyway. The size of the elements of P

may be indicated by the trace of P. Thus, a nonzero D is added -

only if the trace of P is below a user-specified limit. This means
that once D is added, it should not added again until the trace of
P drops below the specified limit.

Variable forgetting factor

Another modification that can be employed to improve the
sensitivity of an estimator is to adjust the forgetting factor peri-
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odically (Fortescue et al., 1981; Ydstie et al., 1985, Ydstie and
Sargent, 1982). This strategy is referred to as the variable for-
getting factor approach. Clarke (1981b) has suggested that the
value of the forgetting factor can be adjusted based on the
nature of the expected parameter variations. A value near 1
(e.g., 0.999) implies slow variations, while a smaller value (say
A = 0.95) implies fast parameter variations. The lower value can
be used initially after a parameter change is detected, followed
by a gradual increase in A to 0.999. The weighting factor can be
related easily to the observed estimation error, which is analo-
gous to the procedure suggested by Vogel (1982).

Higglund (1982, 1983a, b) has recently suggested a more
sophisticated way of discounting old data, based on a variable
forgetting factor, which is adjusted at each iteration so that a
constant desired amount of information is retained. This gives
an additional parameter to be optimized for any given applica-
tion environment. However, both Vogel (1982) and Goodwin
and Teoh (1983) found that decreasing A from 1 at specific
times did not always yield satisfactory performance.

Fortescue et al. (1981) suggested that A be kept near unity
unless the prediction error becomes large; then A should be
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Figure 3. Parameter estimates for the adaptive controlier applled to the cooiing water control loop.
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decreased for several steps thereafter. Ydstie and Sargent
(1982), Ydstie et al. (1985), and Ydstie (1982, 1984a, b) have
proposed an improved algorithm that keeps the information con-
tent of the estimator constant; this algorithm has desirable sta-
bility and cnvergence characteristics. The updating formula is

A(t) = No/IN, + ef1)?
- [T+ 9t - 1)TP(t — Dy(r - D17’} (18)

where N, is an arbitrary positive tuning parameter called the
memory length, and e(r) is the estimation error. A typical value
of N, is 10° (Ydstic et al., 1985).

Perturbation signal

Much of the convergence theory for adaptive control is based
on the requirement of persistent excitation. There is no guaran-
tee that the feedback signal will be a persistently exciting input
(Anderson and Johnstone, 1983). In fact, under some circum-
stances unique parameter estimates cannot be found. Identifia-
bility conditions for least squares estimation have been devel-
oped by Ljung (1979), Gustavsson et al. (1977), and Soderstrdm
et al. (1975). Hence an external signal (a perturbation signal)
must usually be provided in adaptive control. Parameter estima-
tion will be successful (i.e., converging) only when the energy
level of the input is above a certain threshold, so it is important
to monitor the excitation level (Peterson and Narendra, 1982;
Egardt, 1979a, b; Clary and Franklin, 1985), which must be
larger than the level of unmeasured disturbances. Moreover,
persistent excitation is required to ensure a stable controller
{(Kosut and Johnson, 1984). The conditions on persistent excita-
tion are more severe as the model order is increased (Witten-
mark and Astrém, 1984). Clary and Franklin (1985) have
shown that the degree of excitation determines the number of
parameters that can be uniquely identified.

Box and MacGregor (1974, 1976) were among the first inves-
tigators to suggest the use of a perturbation signal for closed-
loop estimation. A perturbation signal in the process input is
necessary to provide reliable parameter estimates when the ele-
ments of P are large. Since it is undesirable to add a perturba-
tion signal continually, it may be added only when it is necessary
by making the amplitude of the perturbation a function of the
size of the elements of P. As suggested by Vogel (1982), the size
of the elements of P may be indicated by the trace of P. Two
functions were employed successfully by Vogel. The first was a
linear relationship between the perturbation amplitude and the
trace of P. To prevent excessively large perturbations, the ampli-
tude was limited to a maximum allowable value when the trace
of P reached a specified value. The second function was simply a
step function. The perturbation amplitude has a specified non-
zero value if the trace of P is above a given value and is zero
otherwise. '

The type of perturbation signal selected by Vogel was a pseu-
dorandom binary sequence (PRBS). The period of a PRBS sig-
nal should be longer than the significant duration of the process
impulse response. Eveleigh (1967) has discussed the properties
of a PRBS and the generation procedure for a PRBS. At each
sampling interval the appropriate element of the PRBS is multi-
plied by the perturbation amplitude and then added to the pro-
cess input. Actually, in the closed loop the PRBS may be added
either directly to the controller output, which is the process
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input, or to the set point. While the PRBS given above has
yielded satisfactory results in actual applications, other pertur-
bation signals may also be chosen (sinusoidal forcing was sug-
gested by Goodwin and Teoh, 1983).

Estimator start-up

During start-up of a self-tuner or estimator, it is desirable
that satisfactory parameter estimates be generated before the
self-tuning controller is actually used to implement the control
action. For example, a commissioning period can be employed
during which time parameter estimation occurs but the process
is controlled by a conventional PI or PID controller with conser-
vative controlier settings (Wittenmark, 1973; Cameron and Se-
borg, 1983).

Alternatively, a base case controller that corresponds to
“safe” values of the parameter vector (0) can be employed.
Small-magnitude test signals may be used initially to excite the
system, thus speeding up the estimation procedure (which can
be done batchwise). During start-up it may be advisable to oper-
ate the estimator until satisfactory parameter estimates have
been obtained before commissioning the adaptive controller,
where the control action is based on the parameter estimates.
Once operational experience has been obtained, it may be desir-
able to use the # from recent operating data in order to acceler-
ate convergence. If there is a large number of parameters in the
model, certain parameters may be assumed fixed during the
start-up phase to assist convergence of the parameter estimation
algorithm [this is done by setting the corresponding elements in
P(0) equai to zero]. It is important not to overparameterize the
system model to any great degree (Astrom, 1982).

Other estimator diagnostics

In order to achieve a robust adaptive controller, it is impor-
tant to decouple the estimator requirements from the controller
implementation. In other words, it is not necessary to strictly tie
the estimator output to the controlier. A formal means of doing
this might involve the use of two time scales (Goodwin and
Teoh, 1983; Johnstone and Anderson, 1982); the parameters are
updated at each sampling instant but the control law parameters
are updated only every M samples. Generally, ad hoc modifica-
tions where both estimator and controlier use the same sampling
rate but the estimator information is used selectively have been
more popular. If a process is near steady state, the estimator will
probably not operate as desired, so in this case the controlier will
operate independently of the estimator. A similar situation may
arise in the start-up phase of an adaptive controller if a commis-
sioning period is used.

When a change in the process parameters occurs, yielding a
large estimation error, the parameter estimates may fluctuate
drastically for a few iterations. In this situation, it is important
not to update the controller settings based on parameter esti-
mates that are grossly in error, since a poorly tuned controlier
and possibly an unstable system may result. Updating the con-
troller with erroneous parameter estimates can be avoided by
applying some simple, easily implemented tests to the new
parameter estimates at each sampling instant. If the new esti-
mates do not pass the tests, the controller parameters should not
be updated at that sampling instant.

As suggested by Vogel (1982), the gain of the transfer func-
tion model provides a reasonably good indication of the quality
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of the parameter estimates. If the process model gain is unrealis-
tic, the parameter estimates are erroneous and the controlier
parameters should not be updated using those estimates. Thus,
if the process model gain does not lie within a specified, accept-
able range, the controller parameters should not be updated at
that sampling instant. The acceptable process gain range may
be specified by high and low limits. The upper limit guards
against the controller’s being updated with erroneous parameter
estimates that represent an inconsistently high gain of the pro-
cess. Thus, since the controller gain is typically inversely reiated
to the process gain, the upper limit prevents sluggish perfor-
mance resulting from an extremely low controller gain. Con-
versely, in the case of erroneous parameter estimates that pro-
duce an unreasonably low process gain, the lower gain limit
protects against oscillatory performance due to an abnormally
high controller gain. The lower gain limit also guards against an
unstable system resulting from control action in the wrong
direction due to a process model gain with the wrong sign.

The poles of the discrete time model should also be checked
periodically. To guard against erroneous parameter estimates
and ensure satisfactory performance from the controller, the
location of the poles of the process model should be examined at
each iteration; if they are not within the acceptable region, the
controller parameters shouid not be updated. With a second-
order model this test is computationally easy, requiring the solu-
tion of a quadratic equation.

Even if the new parameter estimates pass the above tests, they
may still represent relatively large fluctuations from the pre-
vious estimates. Therefore, to prevent large, sudden changes in
the control action, the controller output must be constrained.
Vogel (1982) suggested passing the new parameters through a
first-order filter

Be(2) = p0.(t — 1) + (1.0 — p) B(2) (19)

where §(z) is the vector of current parameter estimates and 8,(z)
is a vector of parameter estimates used by the adaptive control-
ler. p is the filter factor with a value between zero and one.

An application of recursive parameter estimation

In later sections we review various applications of recursive
parameter estimation in the context of adaptive control. Here a
typical application is discussed, illustrating how a parameter
estimator performs with an actual operating process. Vogel and
Edgar (1982a) tested an adaptive control algorithm on a heat
exchange system. They used covariance resetting with A = 1.
After a start-up period in which the parameters were estimated,
they introduced an unmeasured load disturbance (change in the
hot stream flow rate) into the exchanger. They used a first-order
model with n = 1, m = 3, and k = 0. Figure 2 shows the estima-
tion error, which exhibits a large jump when the sustained dis-
turbance enters (at # = 2.6 min). Since the operating conditions
are now changed, the parameter estimates also change signifi-
cantly; the bias term (d in Eq. 1) and the coefficients in B(g~')
are shown in Figure 3. Note that b, and b, return close to their
original values, while 4 and b, move to new values. The estima-
tor used in this experimental application performed successful-
ly; for more details, see Vogel (1982).
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Conclusions and recommendations

While the development of on-line estimation algorithms is
still an active research area, such algorithms have been success-
fully implemented in conjunction with adaptive control. Based
on the results to date, there are several conclusions that can be
drawn about the features of a successful estimation scheme:

1. The recursive least squares (RLS) method is the most pop-
ular estimation technique and appears to exhibit rapid conver-
gence when properly applied. Extended least squares (ELS)
using pseudolinear regression seems to be a satisfactory way to
treat the non-Gaussian noise case, although many studies have
found that the parameters in the C polynomial in Eq. 1 do not
need to be estimated.

2. Either a variable forgetting factor and/or covariance re-
setting is required to keep the estimator running properly. A
constant forgetting factor has many drawbacks. Monitoring the
estimation error is a suitable means to decide when the covar-
iance ought to be reset or how the forgetting factor should be
adjusted.

3. A perturbation signal is required in order to achieve con-
vergence in RLS, especially for higher order models. The per-
turbation signal should be large enough so that it is not masked
by noise or unmeasured disturbances. When the control system
is operating satisfactorily, a perturbation signal does not have to
be used.

4. Control action based on the estimator may be ignored dur-
ing the commissioning period or for other unusual operating
conditions. Parameters may also be left unchanged when un-
measured disturbances enter the system, until there is time to
analyze the new dynamic data. A successful adaptive control
system does not necessarily operate the estimator at all times.

5. System diagnostics using physical limits and other consid-
erations are very helpful in ensuring that the parameter esti-
mates do not drift into unacceptable regions (see the earlier sec-
tion on other estimator diagnostics).

Multivariable recursive estimation

Extension of the results given for single input—singie output
(SISO) models presented earlier to multiple input-multiple out-
put (MIMO) systems is considered here. A discrete-time, trans-
fer function model with an arbitrary number of inputs and out-
puts provides a convenient representation for adaptive control:

y(0) = G(g™) u(t) + Gg™") £(t) (20)

where

G(97"), Gi(g™") = matrices of transfer functions involving the
shift operator
u(?), £(t) = input vectors
(1) = output vector

Each element of G(g~') has the same form as the SISO model
given in Eq. 2. Thus, the G;,(¢™") element is

Xy (a") _ Bu(q'l)
ulg™")  Ayg™)

Gyg") = (21
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where

A,j(q")=5,j—a'{q"’ —dg?—... _agq_"
By(g7)=blq +blg+ ... +blg™"

n = order of the ijth element

By = {1 i, Kronecker delta

xy(g™") = output from Gy(g™")

For N inputs the ith element of y(g~') when the noise model is
neglected [G,(g™") = 0] is

N
(g™ = jZ xy(g™") 22)

The time delay is not explicitly included in Eq. 22 since different
input-output combinations may have different time delays.

With the model given by Egq. 21, all the parameters may be
estimated from the input and output data. Dahlqvist (1979) sug-
gested that models of the form given by Eq. 21 may be simplified
by neglecting the effects of the outputs on each other. To achieve
this structure, 4(¢™") in Eq. 21 can be specified as a diagonal
matrix of polynomials. However, in general A(¢~’) is not
required to be diagonal.

To illustrate the form of the mode] in Egq. 22, consider a two-
input, two-output system modeled by second-order polynomials
(n = 2 for all i and j). In the time domain, the first element of
the output vector at time ¢, y,(?), is related to past inputs and
outputs as follows.

n@) =al'y(t - 1) + ai'y,(t - 2)
+a’y,(t - 1) + a’y(1 — 2) + blluy(r - 1)
+ bY'uy (1 — 2) + bPuy(2 — 1) + bPuy(r — 2) (23)

¥(2) is given in a similar manner. Assume that 4(g™) is a diag-
onal matrix so that the effects of the outputs on each other are
neglected (A4, =0 for i # j). The corresponding time domain
model for y, () in terms of the past inputs and outputs is:

n@ =al'y(t - 1) + al'y, (¢t — 2) + bj'u,(r - 1)
+ bu(t - 2) + blu,(t — 1) + bPu,(t - 2) (24)

The expression for y,(1) is written in a similar manner.

Note that Eq. 24 is in the form of a multiple input-singie out-
put model where all parameters are unknown and must be esti-
mated. If a bias term is added for the unknown disturbance, the
model can be written for NV inputs and /N outputs as

() =¥t = 1) 8z - 1) (25)

where

‘I/IT(I - 1)= [yi(l i ])»-~-’y1(l" n)’
(-1, ..uyt —m),1]
1all:N:biil’--~,b::"dI]

07 (t—1) =[d,...
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Each parameter vector 6, is estimated using the algorithm pre-
sented earlier; for each 6, there will be a covariance matrix P,.

While the above equations are fairly simple in form for
parameter estimation, they present some difficulties in extend-
ing the SISO adaptive results to MIMO systems. Specifically,
the representation of the time-delay terms in a multivariable
system plays an important role in the design of adaptive algo-
rithms for such processes (Elliott and Wolovich, 1984). The
interactor matrix (Wolovich and Falb, 1976) is the most appro-
priate multivariable generalization of a SISO delay term for dis-
crete systems and is required for the design of one-step-ahead
predictive controllers. The interactor matrix is in a canonical
form that is a product of a lower triangular unimodular matrix
(with diagonal elements set equal to one) with a diagonal matrix
that includes the time delay terms. While this approach can be
cumbersome, it can be simplified for some special cases, as dis-
cussed by Dugard et al. (1984) and Elliott and Wolovich (1984).
The interactor matrix ensures the use of the minimum order of
predictors for multivariable systems with different time delays
in each element. Such a characterization is important in formu-
lating the MIMO model for parameter identification and con-
trol.

As in the SISO case, addition of perturbation signals to the
inputs of the multivariable process is necessary to obtain satis-
factory parameter estimates when the elements of P, are large.
For the multivariable parameter estimation, it is also important
that the perturbation signals added to each input be uncorre-
lated in order to ensure reliable parameter estimates. For a two
input—two output system, Gauthier and Landau (1978) sug-
gested using 2 PRBS as one perturbation and the same PRBS
delayed by half its length as the other perturbation.

To avoid unnecessary use of the PRBS signals, their ampli-
tudes can be determined as functions of the size of the elements
of P,. Since each output is generally affected by all of the process
inputs, the PRBS signals should be added to all of the process
inputs whenever the elements of any of the P, become large. as
measured by the trace. Diagnostics should be applied to the new
parameter estimates at each sampling instant before updating
the process model parameters in the multivariable controlier.
These procedures are analogous to those described earlier for
SISO systems. It should be emphasized that in the absence of a
perturbation signal, adaptation of a MIMO modei is exceed-
ingly more difficult than adaptation of a SISO model.

Design Methods Based on Quadratic
Cost Functions

In this section, we consider self-tuning control systems that-
are designed to minimize a quadratic cost function. The original
idea is due to Kalman (1958). Twelve years later, Peterka
(1970) revised the basic concept and extended the approach to
stochastic systems. However, much of the current interest in
self-tuning controllers was largely stimulated by the develop-
ment of the self-tuning regulator (STR) by Astrm and Witten-
mark (1973) and the self-tuning controller (STC) by Clarke and
Gawthrop (1975, 1979). These techniques wili be described in
the next two sections, followed by a discussion of the STC design
parameters. Then a survey of experimental applications is pre-
sented. Succeeding sections are concerned with a number of
important issues including: available theoretical results, poten-
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tial operating problems, extensions to multivariable systems,
and recent developments.

Self-tuning regulator

In the original STR of Astrém and Wittenmark (1973), the
feedback controller was designed to minimize the variance of
the output variable, y. Thus the control objective was to mini-
mize the quadratic cost function,

J, = Var () (26)

where Var (y) denotes the variance of y. Minimum variance
control has not been widely used in the process industries. How-
ever, it is a logical choice for quality control problems in applica-
tions where stochastic disturbances are important (e.g., paper-
making). By reducing the output variance, the set point can be
moved closer to a limiting constraint (Astrém, 1980a; Clarke,
1981a).

Consider the process model in Eq. 2 with n = m. This assign-
ment can be made without loss of generality, since any trailing
coefficients in the A4 or B polynomials can always be set equal to
zero if necessary. We also assume all of the roots of the B and C
polynoinials to be inside the unit circle of the complex plane, i.e.,
they all are located in the stable region.

The minimum variance control law is then given by (Astrém,
1970):

F(g™")

“0 = = B E@)

»(@® @7

where E and F are polynomials of order X — 1and n —1, respec-
tively, with ¢ = 1.

These polynomials can be uniquely determined from the iden-
tity,

Clg™) =A@ E@) +g*Flg™) (28)

Combining Eqgs. 2, 27, and 28 gives the closed-loop relation;

y(1) = E(g)E(t) = £ (2)

+eft—-1)+.+ -+ E@e—k+1) (29)
Thus the output is merely a moving average of the k previous
random disturbances and the output variance is

Var () =c?[1 + e} + + - . €}_}] (30)

where o = Var (). Note that the variance increases with time
delay, k.

The minimum variance control law can be interpreted as con-
sisting of an optimal k-step-ahead predictor and a controller
that attempts to set this prediction each to zero (Astrém, 1970;
Harris et al., 1982). In particular, the optimal k-step prediction,
y*(t + k), based on current and past values of y and u up to
time ¢, is given by (Astrém, 1970):

F(g") y(1) + B(g™") E(g™") u(2)

s Y TR

(31
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The minimum variance control law in Eq. 27 can then be
obtained by setting y*(z + k) = 0. Note that y(z + k) is the
first value of y that can be affected by u(#) due to time delay & in
the process model of Eq. 2.

The relationship between the minimum variance controller
and standard digital controllers such as the Smith predictor and
Dahlin’s controller has been evaluated by Palmor and Shinnar
(1979) and Harris et al. (1982). In particular, they show that
the minimum variance control law can be interpreted as a PID
control law that contains a memory of previous control actions.
The additional terms provide a form of time delay compensa-
tion.

Theoretically, the minimum variance control law in Eq. 27 is
valid for any B polynomial. However, if B has any roots that lie
on or outside the unit circle, the minimum variance controller is
extremely sensitive to variations in the model parameters
(Astrdm, 1970). Thus it should not be used in these situations.
As indicated in the earlier sections on on-line parameter estima-
tion, the sampled-data version of a continuous system can have a
B polynomial with a zero outside the unit circle due to rapid
sampling, or a time delay that is not an integer multiple of the
sampling period (Gawthrop, 1980b; Astrdm et al., 1984).

Next, we consider an adaptive version of the minimum vari-
ance controller. A straightforward approach would be to esti-
mate the A4, B, and C polynomials on-line and then substitute
these parameter estimates, A, B, and C for the unknown param-
eters in Eqgs. 27 and 29. This adaptive control law would have the
form

F(g™")

O " BB

»(1) (32)

where E(g™') and F(g~') are uniquely determined from the
identity

Clg™") = A(a)E@™) +g7*F(g™") (33)
by comparing coefficients of powers in g~!. A disadvantage of
this formulation is that the identity in Eq. 28 has to be solved
on-line at each sampling instant in order to calculate E(g~') and
F(g™"). One way of avoiding this problem is to base the mini-
mum variance control calculations on a predictive model that
can be derived by combining Eqs. 2 and 33. This approach was
used by Astr8m and Wittenmark (1973) in deriving their self-
tuning regulator.

The predictive model for the STR has the form

YA+ k) +ay(t) + - - -+ ay(t —n+ 1) =Bolu(r)
+Bu(~1)+ -+« + Bu(t—-2)] + e+ k) (34)

where £ = n + k — 1 and the random disturbance () is a mov-
ing average of order k — 1 of £(¢). The @; and B, parameters can
be calculated from the g, and b, parameters in Eq. 1 by assuming
that C(g~') = 1 and using the identity in Eq. 28. This assump-
tion concerning C(g™') simplifies the subsequent parameter
estimation problem since recursive least squares can be used; for
C(g~') # 1, other techniques such as extended least squares
must be employed.

Equation 34 is referred to as a predictive model because it
allows the future output, y(z + k), to be predicted from the cur-
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rent output y(), the current input u(¢), and previous vaiues of y
and u:

Ve+ k) =—ayt)— - —ayt~n-1)
+ Bolu(®) + Bu(t — 1)+« - - + Bu(t - D] (35)

Equation 35 was obtained from Eq. 34 by replacing y(t + k) by
its predicted value y*(z + k), and setting the future distur-
bance, (¢ + k), equal to its mean value of zero. Note that Eq.
35 is a special case of Eq. 31 that can be obtained by setting
C(g™') = 1 and expressing polynomials F and BE in terms of
{C!l} and {ﬁz}

The minimum variance control law can be derived by speci-
fying $(¢ + k) = O rearranging Eq. 35 to give

u(t) = ﬁl [ap(8) + « - - + eyt — n+ 1)]
(]
—Bu(t—1)~ ... —Bu(t-2 (36)

The control law in Eq. 36 is the minimum variance control law
for both the predictive model in Eq. 35 and the original model in
Eq. 2. Thus it is mathematically equivalent to the minimum
variance control law in Eq. 27.

The self-tuning regulator is merely an adaptive version of the
minimum variance controller in Eq. 36. Thus replacing the
unknown parameters @, and 8, by their estimates, &,(z) and
Bi(2), gives the self-tuning regulator,

u(t) = o (8 (O)P(2) + - -

.+ & = 1
50 + &, ()y(t — n+ 1)]

—-B@ut-1)— - - - = B(ut -2 (37

In summary, at each sampling instant the following calculations
are performed:

1. Parameter estimates &(1) and B,(r) are updated from
input/output data using recursive least squares.

2. The current control action, u(?), is calculated from Eq.
37.

The STR in Bq. 36 has no provision for nonzero set points, :

integral action, or feedforward control. However, all of these
features can be included (Wittenmark, 1973). In the original
STR, the value of 8, was assumed to be a known constant rather
than an unknown parameter that had to be estimated. This ad
hoc assumption was introduced as an attempt to avoid potential
identifiability problems associated with closed-loop identifica-
tion (Astrdm and Wittenmark, 1973). However, it may be diffi-
cult to select a suitable value of 8, for a poorly understood pro-
cess,

The self-tuning regulator has been used successfully in a
number of experimental applications for both full-scale produc-
tion plants and pilot-plant facilities (Astrdm et al., 1977; Parks
et al., 1980). But simulation and experimenta! studies have
demonstrated that the STR has a number of disadvantages:

1. 1t can be difficult to tune on-line.

2. Unknown or time-varying time delays can result in poor,
even unstable, performance.

3. 1t is not directly applicable to nonminimum phase systems
where B has a zero outside the unit circle.
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The STR is difficult to tune on-line because it lacks a convenient
tuning parameter. Model parameter §, is of some utility since it
acts somewhat like the reciprocal of a controller gain (cf. Eq.
36). However, in some situations where the STR results in oscil-
latory responses and too vigorous control action, the only practi-
cal solution is to increase the sampling period. Unfortunately,
the sampling period is not a convenient tuning parameter for
many computer control software packages.

In the next section, we describe a generalization of the STR
that circnmvents most of these difficulties, the self-tuning con-
troller of Clarke and Gawthrop (1975, 1979).

Self-tuning controller

The self-tuning controller (STC) can be derived in several
different but equivalent ways (Clarke and Gawthrop, 1975,
1979; Clarke, 1981a, 1984). Here, we present an informal deri-
vation due to Clarke (1981a). The starting point for the analysis
is the discrete-time, stochastic model in Eq. 2 with m = n and
d = 0. The STC is expressed in terms of an auxilliary output ¢
defined by,

$(1) = P(g7)y(1) + Q(g7)u(z — k) — R(g™")p. (1) (38)

where y, is the set point and P, 0, and R are user-specified trans-
fer functions of the form:

Py(g™")
Po(q7")

Pg™") = (39)

Guidelines for the selection of P, @, and R will be discussed in
the next section.

The control law used in the STC is designed to minimize the
variance of auxiliary output ¢. This control law, which is
referred to as a generalized-minimum variance control law or
predictive control law, has the form (Clarke, 1981a):

_Ry1) ~ 63 (t + k)

u(t) 0

(40)

where ¢ (1 + k) is the least squares prediction of ¢(¢ + k) =
P(g™") y(1) made at time 7. This optimal prediction is given by

Fy, (1) +~ Gu(1)

ot + k) = c (41)

where y; = y/P,and G = EB. Polynomials E and F are uniquely
determined from the identity,

CP=AE + z7*F/P, (42)

Polynomial F has a degree of n — 1 plus the degree of P,. The
degree of polynomial E is k — 1, which mezns that polynomial G
in Eq. 41 has a degree of n + k — 1. The degrees of Fand G are
important, since the coefficients of F and G are estimated on-
line in the STC.

The following expression for the closed-loop system response
can be derived (Clarke and Gawthrop, 1979) by combining Egs.
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2,40, 41, and 42:

-k

EB + QC
PB + QA

a"ER 0 @)

£ + PB + QA

y() =

Thus the characteristic equation is given by
PB4+ 0A4=0 (44)

Note that the time delay term g=* does not appear in the charac-
teristic equation. Thus the predictive contro! law in Eq. 40 pro-
vides time-delay compensation via the &)(t + k) term. Other
interpretations of this control law have been suggested by Gaw-
throp (1977) and Clarke (1981a).

The self-tuning controller of Clarke and Gawthrop (1975,
1979) is obtained by replacing ¢¥in Eq. 40 by an estimate, &;’:

_Ry® - 33+ k)

u(1) 0 (45)
where ¢¥(¢ + k) is given by
C o3t + k) = Fy (1) + Gu(r) (46)

Parameter estimates F, G, and € are calculated on-line using the
predictive model in Eq. 41 and a recursive technique such as
extended least squares (Clarke, 1981a). If it is assumed that
C(g™") = 1, then recursive least squares can be used instead of
extended least squares.

Although the predictive control law in Eq. 40 was designed to
minimize the variance of ¢, Clarke (1981a) has shown that it
also minimizes a quadratic cost function J,,

J2 = el[P(g)y(t + k) = R(g™)y, (1)}
+ #[Q(g~Hu(®)?} (47)

where u = go/g, and e denotes the expectation operation. The
expectation is conditioned with respect to data up to time ¢
(MacGregor, 1977). To illustrate the utility of cost function J,,
we will consider a few specific examples. If P, 0, and R are
chosen to be scalars: P = R = 1 and Q = X', then J, reduces to

Ly = elly(t + By — y,(OF + N[u@®P (48)

This type of quadratic cost function has been widely used in
optimal control theory (Ray, 1981). Scalar X’ provides a conve-
nient tuning factor that can be used to make the control action
more or less vigorous. In particular, it can be used to trade off
the variance of the error signal, e = y — y,, against the variance
of u (Clarke, 1981a).

As a second example, suppose P = R = 1 and Q =
N(1 — g7'). Then the cost function becomes

= ellp(t + k) — p, (P + N[u@) - u(t - D} (49)

By penalizing the incremental change in u, the resulting con-
troller contains integral action in analogy to the well-known sit-
uation for optimal control (Hammerstrém and Gros, 1980;
Wong and Seborg, 1985b). For the situation where P = R = 1,
Q =0,and y, = 0, then J, = ¢ [y*(¢ + k)] and the resulting con-
troller is the minimum variance controller of Eq. 36.

894 June 1986

Vol. 32, No. 6

The generalized minimum variance contro! law in Eq. 40 pro-
vides several important advantages over the minimum variance
contro! law in Eq. 36:

1. It is more easily tuned.

2. It can be applied to nonminimum phase plants.

The standard STC, like the STR, may perform poorly if the pro-
cess time delay k is unknown or time-varying. Recently, Chien
et al. (1984a) have proposed a modified version of the STC that
is less sensitive to unknown or varying time delays. Clarke
(1982) has compared the performance of the STC and pole-
placement design methods for systems with variable time
delays.

Selection of design parameters

We have seen that self-tuning control systems consist of a
combination of a feedback control strategy and an on-line
parameter estimation scheme. Consequently, the design of a
self-tuner includes the specification of three types of design
parameters: model parameters, control parameters, and estima-
tion parameters. A detailed discussion of each design parameter
and its influence on control system performance is beyond the
scope of this paper. Instead, we will present a brief overview of
the design parameter selection for a popular self-tuner, the STC
of Clarke and Gawthrop. For more detailed analyses of the
design parameters for various self-tuners, see the papers by
Astrém (1980a, b), Clarke (1981b), Wellstead and Zanker
(1982), Isermann (1982), and Wittenmark and Astrdm (1984).

As an illustrative example, we consider the STC based on the
generalized minimum variance controller in Eq. 40 and ex-
tended least squares estimation.

Model Parameters. Since the STC is based on the discrete-
time model in Eq. 2, four model parameters must be specified 2
priori: model orders n and m, time delay k, and sampling period
Ar. Key considerations affecting the selection of these model
parameters have been presented in the section on linear differ-
ence equation models.

Control Parameters. The controller design parameters for the
STC are the P, Q, and R transfer functions in Egs. 38 and 47.
Some guidelines concerning the choice of these parameters will
be summarized here. From the closed-loop relation in Eq. 43 it is
clear that for @ = 0 and R = 1, the closed-loop transfer function
for set-point changes is M(g~*) = 1/P(g""). Thus for this situa-
tion, P can be specified to give a desired closed-loop response for
set-point changes (Clarke, 1981a). Typically, M(g~") is se-
lected to be a low-order transfer function (plus zero-order hold)
whose dynamics are somewhat faster than the open-loop sys-
tem.

Transfer function R(g™") can be selected to provide set-point
filtering and thus tailor the set-point response without affecting
the load response. For example, if step changes in set point are
undesirable, more gradual changes can be introduced by speci-
fying R(g™') = /(1 — r,g™"). This first-order filter converts a
step change in y, to an exponential change in the filtered set
point and produces less overshoot in the output variable. Param-
eter 7| determines how fast the exponential response will be;
parameter r should be adjusted so that P(¢~") and R(g™"') have
the same steady-state gains. Otherwise offset will occur. (The
steady-state gain for these transfer functions can be obtained by
setting g = 1.)

Polynomial Q(g"') can be used to reduce the control effort by
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penalizing the control variable u. A typica) choice is Q(g~?) =
N1-9")orQ(g7") =N(1 —g7)/(1 — ag™') where a is 2
constant. Increasing A’ tends to make the control action less vig-
orous, while the (1 — g~') term provides integral action to elimi-
nate offsets after load and set-point changes. A number of alter-
native methods have been proposed for eliminating offset,
including: estimation of bias 4 in the process model of Eq. 2,
modification of the process model, or addition of an integrator in
either an inner or outer feedback loop (Clarke and Gawthrop,
1979; Astrom, 1980a; Modén, 1981b; Allidina and Hughes,
1982). Clarke et al. (1983) have provided an in-depth discussion
of alternative approaches and have proposed a promising new
approach based on a modified predictor.

Toivonen (1983c) and Leong et al. (1984) have suggested

. automatic adjustment of Q(g~*) = X’ to achieve desired closed-
loop performance.

Estimation Parameters. In order to use a recursive estimation
scheme such as extended least squares, several parameters must
be specified: forgetting factor A, initial parameter estimate 6(0),
and initial covariance matrix P(0). Guidelines for the selection
of these parameters have been presented in earlier sections.

Experimental applications

The theoretical development of self-tuning control systems
during the past decade was accompanied by a wide variety of
experimental applications. In fact, early industrial applications
in Sweden (Astrém et al., 1977) were reported within one year
after the landmark STR paper by Astrdm and Wittenmark
(1973) was published. Table 2 summarizes experimental appli-
cations of self-tuning controllers to process control problems.
This summary includes only those experimental applications in
which the self-tuner was designed to minimize a quadratic cost
function. Applications of other design methods based on pole
placement and closed-loop stability will be discussed in later sec-
tions.

In Table 2 a distinction is made between applications to labo-
ratory-scale equipment and those that involved full-scale indus-
trial plants. Most of the reported industrial applications con-
sisted of short-term experiments to demonstrate the feasibility
of self-tuning. However, at least a few of the industrial applica-
tions have been in operation for several years (Dumont and
Bélanger, 1978, 1981; Westerlund et al., 1980). Also, Hodgson
(1982) reported that a self-tuning controller implemented on a
portable microprocessor provided several months of troublefree
operation in applications involving three large batch reactors for
latex polymerization.

It is noteworthy that the majority of the industrial applica-
tions of self-tuning controllers have occurred in Europe and
Canada. By contrast, only a few applications have been reported
for industrial plants in the United States (Fjeld and Wilhelm,
1981; Hoopes et al., 1983; Piovoso and Williams, 1984). Since
general-purpose self-tuners are now commercially available,
widespread industrial application of self-tuners in future years is
anticipated.

Theoretical results

A number of theoretical studies have considered important
issues associated with self-tuners including the self-tuning prop-
erty, asymptotic convergence, and robustness. These analyses
are quite difficult and abstract since the differential equations
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Table 2. Experimental Process Control Applications of
Adaptive Control Systems Based on Quadratic Cost Functions

Absorption/Desorption Plants

Fortescue et al. (1981)

Kershenbaum and
Fortescue (1981)

Ydstie et al. (1985)

Hiram and Kershenbaum
(1985)

Cement Raw Material
Blending
Talabér et al. (1977)
Keviczky et al. (1978)
*Westerlund et al. (1980)

Chemical Reactors
*Ahlberg and Cheyne (1976)
Harris et al. (1978)
Buchholt et al. (1979)
Clarke and Gawthrop
(1981)
Yang et al. (1981)
Hallager and Jgrgensen
(1981, 1983a,b)
*Hodgson (1982)
*Hodgson and Clarke (1982)
McDermott (1984)
*Bengtsson and Egardt
(1984)
Hallager et al. (1984)
*McAlpine (1985)

Chip Refiner
*Dumont (1982)

Concentration-Flow Process
Koivo et al. (1981)

Cryrostat
*Hodgson (1982)

Diesel Engine
Welistead and Zanker
(1981)

Digesters
*Cegrell and Hedqvist
(1975)
*Sastry (1977)
Bélanger et al. (1983)

Distillation Columns
Sastry et al. (1977)
Morris et al. (1977, 1980,
1981, 1982)
Dahlgvist (1979, 1981)
Lieuson et al. (1980)
Clough and Lovece (1981)
Chien et al. (1985b)
Vagi et al. (1985)
Driers
*Modén and Nybrant (1980)
*Modén (1981a)
*Najim et al. (1982)
*Tuffs and Clarke (1985)
Evaporator
Chang (1975)
Buchholt and Kiimmel
(1981)
Extruder
Bezanson (1983)

Heat Exchangers and Heating
Systems
Jensen and Hansel (1974)
Kurz et al. (1980)
Bergmann and Radke
(1980)
Clarke and Gawthrop
(1981)
Dexter (1981)
Radke (1982a,b)
de Keyser and van Cauwen-
berghe (1982)
Schumann (1982)
Cameron and Seborg
(1983)
*Hoopes et al. (1983)
Radke (1982a,b)
Radke and Isermann (1984)
Lee et al. (1985)
*Nesler (1985)
*Graham and Dexter (1985)

Gawthrop (1981)
de Keyser and van Cauwen-
berghe (1982)

Nuclear Reactor
Allidina et al. (1981)

Ore Crushing
*Borisson and Syding (1976)

Paper Machines

*Borisson and Wittenmark
(1974)

*Cegrell and Hedqvist (1975)

*d’Hulster et al. (1980)

*Fjeld and Wilhelm (1981)

*Fjeld (1982)

*de Keyser and van Cauwen-
berghe (1982)

Sgeberg (1982)

pH Control

Buchholt and Kiimmel
(1979)
Bergmann and Lachmann
{1980)
*Jacobs et al. (1980, 1985)
Clarke and Gawthrop
(1981)
*Proudfoot et al. (1983, 1985)
Gustafsson (1985)
*Piovoso and Williams
(1984)

Plastic Film
*M3ikild and Syrjinen
(1983)
Rolling Mill
*Bengtsson (1979)

*Bengtsson and Egardt
(19¢4)

Rotary Kiln
*Dumont and Bélanger {1978)
*Mejnertsen and Williams
(1982)

Furnace

de Keyser and van Cauwen-

berghe (1981)

Haber et al. (1981)
Kawata et al. (1984)

*Denotes experimental application o full-scale industrial plant.
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that describe the closed-loop behavior of self-tuners are non-
linear, time-varying, and stochastic. Despite this inherent com-
plexity, considerable progress has been made, especially for the
ideal sitnation where the model structure is correct and the
model parameters are constant.

Most of the self-tuners that have been proposed, including the
STR and the STC, exhibit the self-tuning property. That is, the
controller parameters eventually converge to the values that
would be used if the actual process mode! parameters were
known. A related concept, global convergence, describes the
desirable situation where the tracking error, e = y, — y, asymp-
totically approaches zero and the input u(z) and output y(7) are
uniformly bounded. Goodwin et al. (1980, 1981) have proved
global convergence for broad classes of both SISO and MIMO
self-tuners. These papers also summarize earlier research on this
topic. Osorio-Cordera and Mayne (1981) and Lozano (1982)
have analyzed the convergence properties of STR algorithms
with variable forgetting factors. Goodwin et al. (1983) have per-
formed a similar analysis for a STR with covariance resetting.
The exponential convergence of adaptive control algorithms has
also received considerable attention (Anderson and Johnson,
1982).

In recent years there has been growing interest in analyzing
the robustness characteristics of self-tuners. The term robust-
ness refers to the performance of a self-tuner during realistic
conditions where the assumed process model structure is incor-
rect, plant variations occur, unanticipated disturbances and
plant constraints are present, and hardware limitations such as
magnitude and rate limits must be considered. Numerous simu-
lation and experimental studies have demonstrated that self-
tuners can be made quite robust but that practical limits do
exist. However, the theoretical results concerning robustness
that are presently available are quite restricted (Gawthrop and
Lim, 1982; Lim, 1982).

Potential operating problems

The theoretical benefits that can be provided by self-tuning
control systems are readily apparent. Technical feasibility is not
an issue since self-tuners can be easily implemented via micro-
processors (Glattfelder et al.,, 1980; Clarke and Gawthrop,
1981). But in order to achieve widespread industrial acceptance
it is essential that self-tuners be robust enough to cope with a
wide range of real-world conditions. Potential operating prob-
lems associated with self-tuners and ways of avoiding them are
described in the informative survey articles by Astrém (1980b,
1983), Clarke (1981b), Clarke and Gawthrop (1979), Isermann
(1982), Wellstead and Zanker (1982), and Wittenmark and
Astrém (1984), and in the papers by Bristol (1983), Yang and
Lee (1983), Latawiec and Chyra (1983), and Clarke et al.
(1983).

Many potential operating problems can be avoided or their
effects greatly reduced by careful implementation of the estima-
tor and by use of appropriate estimator diagnostics, as discussed
in the earlier sections on operating problems of parameter esti-
mation algorithms.

Multivariable control problems

In recent years there has been considerable research effort
devoted to the development of self-tuners for processes with
multiple inputs and multiple outputs, i.e., for multivariable con-
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tro} problems. A typical starting point in these analyses is the
multivariable generalization of Eq. 2:

A(g) y(1) = B(g™) u(t — k) + C(g) E(2)  (50)

where y is the output vector, u is the input vector, and £ is the
random noise vector. All three vectors are n-dimensional. Ma-
trices A(g~"), B(g™"), and C(g™") are all n x n matrices whose
elements are polynomials in the shift operator g~ . For exam-
ple,

B(g)=By+Big'+---+Bg™" (51)

It is usually assumed that 4, = C, = I, B, is nonsingular, and
that the roots of det C(g~!') lie inside of the unit circle in the
complex plane (Koivo, 1980).

The process model in Eq. 50 implies that there is a time delay
of at least k sampling periods associated with each input-output
pair. Longer delays can be included in the model by specifying
that selected elements of the {B,} matrices are zero. For example,
if k = 1 and a time delay of two sampling periods is associated
with the response of y, to u,, then the (2, 1) elements of B, and
B, should be zero.

Multivariable versions of the STR have been developed for
problems where B, is nonsingular and where det B(g~") has all
its roots inside the unit circle (Borrison, 1975, 1979; Keviczky
and Hetthésey, 1977; Keviczky et al, 1978; Bayoumi and El-
Bagoury, 1979). Both requirements are quite restrictive; By is
often nonsingular due to the presence of different time delays for
various input-output pairs. For nonminimum-phase systems, det
B(g™") will have at least one root located outside of the unit cir-
cle. As discussed earlier, nonminimum-phase systems can occur
when rapid sampling is used or if the time delay is not an integer
multiple of the sampling period (Astrém et al., 1984; Clarke,
1981a). If the minimum variance controller results in excessive
control action, the control action can be made less vigorous by
introducing a slow pole in the closed-loop system. The resulting
scheme has been referred to as detuned minimum variance con-
trol (Wellstead and Zanker, 1982).

Multivariable extensions of the Clarke-Gawthrop self-tuning
controller have been developed by several research groups (Koi-
vo, 1980; Lu and Yuan, 1980; Keviczky and Kumar, 1981;
Bayoumi et al., 1981; Wong and Bayoumi, 1981; Grimble and
Moir, 1983; Chien et al., 1983, 1984b, 1985a, b). Like the origi-
nal Clarke-Gawthrop STC, these methods allow cost function
penalties to be placed on the manipulated input ¥ and are appli-
cable to nonminimum phase systems. Although early papers
were based on the restrictive assumption that each input-output
pair had the same time delay, more recently developed design
methods can accommodate arbitrary time delays for each pair
(Morris et al., 1981, 1982; Tanttu and Koivo, 1983; Chien et al.,
1984a, 1985a; Dugard et al.,, 1984). A few design methods
permit different numbers of inputs and outputs (Wong and
Bayoumi, 1981; Favier and Hassani, 1982; Grimble et al., 1982;
Toivonen, 1983b) or a different sampling rate for each output
variable (Morris et al., 1981, 1982; Chien et al., 1983; Costin
and Buchner, 1983). Some multivariable self-tuners are appli-
cable to plants that are either open-loop and unstable or nonmin-
imum-phase (McDermott and Mellichamp, 1983; Grimble and
Moir, 1983). McDermott and Mellichamp (1984a) and Jun et
al. (1985) select the weighting matrices in the quadratic cost
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function so as to assign closed-loop poles and to achieve approxi-
mate decoupling. Self-tuners that include classical decoupling
controllers have also been proposed (Gawthrop, 1983; Chien et
al., 1984b) and experimentally evaluated (Chien et al., 1985b).

Multivariable self-tuners designed using a linear-quadratic-
Gaussian approach have recently been reviewed by Grimble
(1984a, b). They typically have increased on-line computational
requirements in comparison with the STR and STC approaches
(Peterka and Astrém, 1973; Astrom, 1980a; Lam, 1980; Hal-
lager and Jgrgensen, 1981; Grimble et al., 1982; Grimble,
1984a, b), but the computational load can be reduced by solving
the Ricatti equation by performing only a single iteration at
cach sampling instant.

Experimental applications of multivariable self-tuners have
been reported for several industrial plants (Borisson, 1975; Tal-
abér et al., 1977; Keviczky et al., 1978; Najim et al., 1982), as
well as laboratory-scale distillation columns (Morris et al.,
1980, 1981, 1982; Dahlqvist 1979, 1981; Chien et al., 1985b;
Vagi et al., 1985) and chemical reactors (Buchholt et al., 1979;
Hallager and Jgrgensen, 1981, 1983a, b; McDermott, 1984).

Some recent developments

So far in this section we have emphasized the STR of Astrom
and Wittenmark and the STC of Clarke and Gawthrop. We will
now briefly summarize some extensions and related develop-
ments.

The STC of Clarke and Gawthrop (1975, 1979) is an implicit
self-tuner which is designed to minimize the k-step-ahead per-
formance index in Eq. 47. This performance index is referred to
as a single-stage cost function because it is only concerned with
what happens at a single sampling instant, k steps ahead. A
number of recent studies have considered alternative cost func-
tions. In analogy with the well-established linear-quadratic-
Gaussian (LQG) theory of optimal control (Ray, 1981), self-
tuners can be designed to minimize the following cost function
(Lam, 1980; Grimble et al., 1982; Samson, 1982; Grimble,
1984a, b)

Jy = €le” (£)Qe(?) + u7(t)Ru(1)] (52)

where for the multivariable control problem, e is the m-dimen-
sional error vector, e = y, — y, and u is the m-dimensional con-
trol vector. The expectation in Eq. 52 is unconditional, in
contrast to the conditional expectation used in the standard
Clarke-Gawthrop formulation of Eq. 47. A disadvantage of this
approach is the increased computational requirements, which
occur because the control law calculations typically involve
either spectal factorization or the solution of a Riccati equation.
Alternatively, one can use a receding horizon or extended hori-
zon cost function that weighs y and u at NV time steps rather than
at a single time step. For example, Lam (1980) has performed a
detailed analysis using the SISO cost function:

Jom e["f s A’u,’J 53)

where the expectation is conditional upon data up to time .
Related approaches have been considered by Greco et al.
(1984), de Keyser and van Cauwenberghe (1981, 1982), Ydstie
(1982, 1984a, b), Samson (1982), Lee and Lee (1985), and van
Cauwenberghe and de Keyser (1985).
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Most of the self-tuning controllers that are available are
based on a discrete-time transfer function model of the process
such as Eq. 2. However, several recent papers have employed
other types of process models. Lam (1980), Warwick (1981,
1982) and Bezanson and Harris (1984) have recently proposed
several explicit self-tuners based on state-space models. Adap-
tive versions of dynamic matrix control (Freedman and Bhatia,
1985) and internal model control (Svoronos, 1985) have also
been proposed. Gawthrop (1980b, 1982b) has developed hybrid
self-tuners that are based on continuous-time transfer function
models. Special types of nonlinear models such as bilinear mod-
els (Svoronos et al., 1981), Hammerstein models (Anbumani et
al, 1981; Lachman, 1982), and sector nonlinearities (Golden
and Ydstie, 1985) have also been utilized. Agarwal and Seborg
(1985) have recently extended the Clarke-Gawthrop formula-
tion to a general class of nonlinear models. Nonparametric
approaches to self-tuning have been developed by Wellstead and
Zarrop (1983).

Two recent papers have proposed modifications to the Clarke-
Gawthrop design procedure in order to reduce the variance of
the input variable (Toivonen, 1983a; Bayoumi and Ballyns,
1983). Self-tuning control in the presence of input constraints
has been considered by Mikild (1982) and Bezanson (1984).

Astrém (1985) has recently proposed an expert system
approach to coordinate alternative adaptive control strategies
such as gain scheduling, self-tuning, and autotuning.

Design Methods Based on Pole Placement

As an alternative to controller design based on optimization of
some performance index, Wellstead et al. (1979) and Astrém
and Wittenmark (1980) have suggested self-tuning controllers
with the controller design based on pole placement. The presen-
tation in this section differs from the preceding one in that in
most cases we use an explicit approach to self-tuning. The model
parameters are first estimated, followed by design of the con-
troller assuming that these parameter estimates are correct.
There are only a few cases where implicit self-tuners based on
pole placement can be employed.

The pole placement controller has the general form shown in
Figure 4:

F(g")u(r) = H(g™")p.(1) — Glg™")p(2) (54)
where
Fg ) =1+f/g"+ - +fg"

G =B +&g +- - +8q"
Hg ) =by+ g7+ + g™

Given a process model of the form of Eq. 2, the closed-loop
transfer function is given by

¥(0) =3 £(1) + V(1) (55)

FC HB
AF + GBg AF + GBq
where A, B, and C are defined in Eq. 2. Fand G are selected so
that the closed-loop poles are at the desired locations as specified
by the polynomial T(g~'), defined as

T@g)=1+89"+... +1,g™" (56)
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Figure 4. Block diagram for control law.
F, G, Hin Eq. 54 for modei
A B CinEq.2,d=0.

The nth order polynomials F(g~') and G(g~') are determined
by requiring that

AF + GBg™* = TC (57)
which is known as the Diophantine equation. The parameters of
Fand G are obtained by equating like powers of g~} in Eq. 57,
which yields a set of simultaneous equations. With this selection

for the controller, the closed-loop equation for the regulator case
(yr — 0) is

F(g™)
T(g™")

See Clarke (1981a) for a sample calculation of F and G for a
simple process model.

An advantage of the pole placement controller is that it can be
tuned by appropriate shifting of the closed-loop poles, which
allows the controller actions to be limited as desired. In addition,
the pole placement controller can be applied to nonminimum-
phase processes. Although the controller shown above does not
guarantee equality of the output and set point (i.e., no offset),
integral action and set-point tracking features may be added, as
discussed later. A disadvantage of the pole placement design
approach is that the actual closed-loop performance is uncertain
before the controller parameters are determined since, as shown
in Eq. 58, the closed-loop zeros depend on the control law poly-
nomials. Consequently, after the closed-loop poles are selected,
the controller parameters must be calculated to determine the
location of the closed-loop zeros and to verify the performance of
the resulting controller.

»(@) = £0) (58)

Wellstead-Prager procedure

For the design procedure described above, implementation of
the pole placement controller as an explicit self-tuning con-
troller requires the solution of the set of (# + k) simultaneous
equations, Eq. 57, at each iteration. The complexity of this solu-
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tion thus depends on the model order (#) and delay time (k).
While certain conditions could cause the solution for the con-
troller parameters to be ill-conditioned, this does not seem to be
a frequently occurring problem. This self-tuning algorithm may
also be formulated as an implicit method for one special case
(Wellstead and Sanoff, 1981; Allidina and Hughes, 1982).
However, the implicit algorithm may be unstable for nonmini-
mum-phase processes if the closed-loop poles are not selected
properly.

Like the self-tuning controllers discussed in the previous sec-
tion, pole placement controllers provide dead time compensa-
tion. Wellstead et al. (1979) have suggested a modification to
the process model of their self-tuning pole placement algorithm
that allows the controller to adapt to an unknown or varying
dead time without requiring an explicit estimate of the dead
time. Specifically, k in the process model is selected to corre-
spond to the minimum expected dead time k,, and the numera-
tor polynomial, B(g™"), is extended by k, terms, where k, + k, is
the maximum expected dead time. In this case, the dead time is
modeled by leading coefficients of B(g™"), which may be zero. If
all coefficients in B(g™") are zero except for the last one (highest
power of g~'), this corresponds to a change in the dead time to -
k) + k,. While overparameterization of B(g™") offers a solution
to the problem of performance loss due to unknown or varying
dead time, the complexity of the algorithm is increased with the
dead time. For example, for a process with large dead time, the
order of the controller polynomial F(g~") is high, and in turn the
number of simultaneous equations to be solved is large. As a
result, the algorithm is not attractive for processes with large
dead times (see the section on the Vogel-Edgar controller,
below, for a solution to this problem).

The self-tuning regulator discussed previously is related to a
pole placement controller. According to Eq. 44, the characteris-
tic equation is given by the solution of a polynomial equation.
The roots of PB + QA can be shifted by using different values of
Q. In the normal application of the STC, P is chosen to be 1.0
and @ is taken to be N'(1 — ¢'). But as discussed by McDer-
mott and Mellichamp (1983, 1984a), such assumptions about P
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and Q are quite restrictive for complicated dynamic systems.
They recommended that higher order models for P be selected.
The solution of the simultaneous equations for the closed-loop
poles can be done quickly at each time step and need not be car-
ried out when there is little change in the model parameters.

The selection of the closed-loop poles is tied to the value of At
employed; if Az is changed, the pole also must be changed to
maintain response quality. The sampling period can be adjusted
on-line if necessary, followed by selection of the optimum
closed-loop pole. Simulation results by McDermott and Melli-
champ (1983) have shown that such a one-dimensional optimi-
zation is feasible to carry out on-line and does provide a notice-
able improvement in load responses.

Astrom-Wi ttenmark procedure

A more general design procedure for self-tuning controllers
based on pole placement and zero cancellation has been pre-
sented by Astrdm and Wittenmark (1980). With their proce-
dure, the desired controller is derived from specification of the
servo performance, while the controller designs for the pre-
viously discussed self-tuning algorithms have been based on Teg-
ulatory performance. The process model used for their algo-
rithm is given by Eq. 1.

In Astrém and Wittenmark’s design procedure, the controller
is designed by specifying the desired transfer function between
the set point and output as

B.(g7 g "

9
RTe) »(8) (59

y@) =

In contrast to the previously discussed pole placement design
method, this procedure places the closed-loop poles but also pro-
vides for cancellation of some or all of the zeros. Hence the
closed-loop response is completely specified with no uncertainty.
The general form for the controller is given by the feedback law,
Eq. 54. In some cases, H(g™!) = G(g™"), and the control law of
Eq. 54 can be written in the more common form given below.

u() = 2 [0) - 0] (60)

With the controller of Eq. 65, the closed-loop transfer function
is

y HBq*  B.g™* 1)
¥, AF+GBg* 4,

where the righthand side is the desired closed-loop transfer
function of Eq. 59. Note that the g~ operator has been omitted
as argument of the polynominals.

The controller design problem is to find F, G, and H to satisfy
Eq. 61. Certain choices of the form of F, G, and Hlead to a PID
controller when the process model is second order (Tjokro and
Shah, 1985). More generally, it is apparent from Eq. 61 that any
factors of B that are not factors of B,, must be factors of f‘, so
they will cancel. Consequently, open-loop zeros that are not
desired as closed-loop zeros must appear in F. Conversely, open-
loop zeros that are not desired as controller poles in F must
appear in B,,. Therefore, factor B as

B=B"B- (62)
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where all of the zeros of B* are located within the unit circle and
correspond to well-damped response modes. All of the zeros of
B~ are outside the unit circle (unstable) or correspond to poorly
damped (ringing) modes. With Eq. 62, the closed-loop transfer
function of Eq. 61 becomes

TR+ R-a—k B.a*
_i';Bq—__—k = bl (63)
AF + GB*B™q A,

In order to obtaina satisfactory controller, the zeros of B~ are
not desired as controller poles in F. Thus, it is clear from Eq. 63
that B~ must appear in B,,, and B,, is factored as

B, =B,B (64)

where B,, represents desired closed-loop zeros not included in
B~. In addition, Eq. 63 implies that B* must appear in F, which
is expressed as

F=FB* (65)

F, corresponds to controller poles in addition to those of B*. Sub-
stituting Egs. 64 and 65 into Eq. 63 and canceling like terms,
Eq. 63 becomes

H B
—— 66
AF+ GB~q* A, (66)
Since the order of the polynomial A4,, is normally less than the
order of (AF, + GB~q™*), there are factors in Egq. 66 that can-
cel, and H may be factored as

H-H,B,, (67)
Thus, Eq. 66 becomes
AF, + GB q™* = 4, H, (68)

H, is specified by the user, and the controller design procedure
then requires the solution of Eq. 68 for F, and G. As in previous
cases, this may be done by equating coefficients of like powers of
g~', which yields a set of simultaneous equations. The controller
polynomials Fand H are obtained from F; and H, through Egs.
65 and 67. Astrém and Wittenmark (1980) have discussed the
selection of H, and the orders of F, and G.

Implementation of the pole placement controller designed
above as a self-tuning controller requires the following steps to
be performed at each iteration:

1. Estimation of the process model parameters, Eq. 1.

2. Factorization of B (actually B, the estimated model
parameters) as in Eq. 62,

3. Solution of a set of simultaneous equations to obtain the
controller parameters from Eq. 68.

4. Calculation of the control action from Eq. 54.

Note that this is an explicit self-tuning algorithm.

One disadvantage of this procedure is that factoring B as in
Eq. 62 is essentially a spectral factorization, which is not desir-
able to perform each sampling interval as part of the self-tuning
algorithm. Two special cases, which avoid the factorization, are
given below.
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Case 1. All Process-Zeros Are Canceled. Here, all process
zeros are canceled and no additional zeros are introduced. This
means that in Eq. 62, B~ = 1 and B,, = K, where Kis a constant.
Thus, with B~ = 1 and B,, = K, Egs. 64, 65, 66, and 68 are,
respectively,

B,=B, =K (69)
F=FB (70)
H=HK (71)

AF, + Gg™* = A,H, (72)

Since the closed-loop transfer function is normally specified
such that its steady-state gain is unity, B,,(1)/4,(1) = 1, the
constant Kis given by

K= 4,(1) (73)
Since all of the process zeros are canceled by controller poles,
the resulting controller is not suitable for processes with non-
minimum-phase or poorly damped zeros.

Case 2. No Process Zeros Are Canceled. For this case, the
closed-loop zeros are equal to the process zeros (i.e., B = B,,).
Thus, in Eq. 62, B* = 1 and Egs. 64, 65, 67, and 68 become,
respectively,

B, = BB =B,B" (74)
F=F (75)
H-HB, (76)

AF + GBq™* = A, H, )

From Egq. 74, since the zeros of B,, equal the zeros of B, B,, isa
constant. So the steady-state gain of the closed-loop transfer
function is 1.0, B,,, is specified as

A4,(1)

Bm! = B(l)

(78)

Here, since none of the process zeros is cancelled, the resulting
controller is satisfactory also for processes with nonminimum-
phase or poorly damped zeros.

A disadvantage of the pole-zero design procedure is that the
controller design calculations, whether given in the general form
of Eq. 68 or in the form for one of the special cases above, can be
time-consuming. To avoid these controller design calculations,
the algorithm can be written as an implicit algorithm by com-
bining Eq. 1, with £ = d = 0 and Eq. 68 to obtain

AnHy(t) = g *B~[Fu(t) + Gy(1)] (79)
The controller design calculations for this alternate process
model are trivial, since Fand G appear directly in the model. For
implementation of the algorithm in this form, the parameters of
the model of Eq. 79 are estimated on-line. However, since Eq. 79
is nonlinear in the parameters, the parameters of Fand G are not
casily determined. The estimation problem may be simplified
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considerably for the case considered previously in which all of
the process zeros are cancelled (B~ = 1). Using this approach,
the self-tuning controller presented by Clarke and Gawthrop
(1975) may be obtained (Astrém and Wittenmark, 1980).
Notice that the case in which none of the process zeros is can-
celled (B* = 1) does not simplify the estimation problem asso-
ciated with the implicit algorithm.

Dahlin’s controller

Dahlin’s (1968) controller can also be derived from the gen-
eral pole-zero controller design procedure presented by Astrém
and Wittenmark (1980). For Dahlin’s controller, the orders of
A(g~?) and B(q™!) are assigned so that

m=n-—1 (80)
A first-order, closed-loop transfer function is specified for Dah-
lin’s controller; in Eq. 59,

An(g7) =1 — /g™ (81)
where At is the sampling interval and 7, is the desired time con-
stant of the closed-loop process, which can be used as a tuning
parameter. This controller corresponds to case 1 of Astrém and
Wittenmark’s general procedure in which all process zeros are
cancelled. Thus, with 4,, defined as above, it is clear from Egs.
69 and 73 that

B,=1— % (82)
The controller design equation for this case is given by Eq. 77.

H, is selected to be 4 and the controller design eguation
becomes

AF, + Gg™* = 4,4

Dabhlin’s controller is then obtained from Eq. 83 by specifying
the order of F, to be k and the order of G to be n. With these
specifications, the number of simultaneous equations repre-
sented by Eq. 83 is one less than the number of unknowns. Dah-
lin’s controller (G,c) results by specifying the extra unknown
such that G = H. Then, solving the set of simultaneous equations
represented by Eq. 83 yields

(83)

_G@™
% Fg™)
(1 = e A(g™)
T - e~ (1 - e¥)g]B(g )

(84)

Note that by initially requiring that G = H, the controller design
calculations become trivial, since expressions for F; and G may
be obtained directly from Eq. 72.

Unfortunately, controllers that cancel all of the process zeros
are not suitable for nonminimum-phase processes or processes
with poorly damped zeros. Thus, Dahlin’s controller is unstable
for nonminimum-phase processes, and when applied to pro-
cesses with poorly damped zeros, G exhibits the undesirable
phenomenon known as ringing. Ringing is the term used to
describe excessive oscillation of the controller output, which
occurs with some discrete controllers when they are applied to
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processes with zeros having poor damping. In the presence of
ringing, the process output may be at the set point at the sam-
pling instants, but examination of the process output between
sampling times reveals that it 100 oscillates. The conventional
approach to reduce ringing is to set g = 1 in the ringing term of
the controller transfer function (Touchstone and Corripio,
1977). However, Vogel (1982) has shown that this procedure
may still give unsatisfactory control, especially for large ratios
of dead time to time constant and/or high-order processes. For
low-order models, Dahlin’s controller can be suitable for use in
adaptive control (Touchstone and Corripio, 1977; Hoopes et al.,
1983).

Vogel-Edgar controller

Vogel and Edgar (1982a) developed a pole-zero placement
controller based on case 2 of Astrém and Wittenmark’s general
pole-zero design procedure. For this controller (Gyg) let

m=k, -1

k=k +1 (85)
where k; and k; are used to denote the expected range for dead
time variations, k) < k < k; + k,. The Vogel-Edgar controlier
uses the same A,,(g™") as Dahlin’s controller, i.., Eq. 81. Since
Gye(g™") corresponds to the special case where none of the pro-
cess zeros is cancelled, B, is determined from Eq. 78 to be

1 — g4/

B, = (86)

k-1
2 b

i=0

For this case, the controller design equation is given by Eq. 82
and yields G,z(g~') when the order of Fis k, + k,, the order of
Gis n, and H, ~ A. With these specifications the controller
design equation is

AF + GBg™* = 4,4 87
The number of simultaneous equations represented by Eq. 93 is
one less than the number of unknowns. To obtain Gys(g™"), the
extra unknown is specified by setting G = H. Solution of the set
of simultaneous equations given by Eq. 93 then yields the con-
troller below:

G (-e®y1+ag+.--+ a,3"")
GVE N ka1

(1 — elmg™1) (Z b,) -1 -e*rp

i=0

(88)

where

B=(bo+big+- - - +b,_,gk+)gh=

As with Dahlin’s controller, the controller design calculations
become trivial by initially requiring that G = H, because Fand G
may be solved for directly in Eq. 77.

Controllers that cancel none of the process zeros can be
applied to processes that are either nonminimum-phase or that
have poorly damped zeros. Therefore, unlike Dahlin’s control-
ler, Gyg(g") bas no unstabie poles for nonminimum-phase pro-
cesses and is also suitable for processes with poorly damped
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zeros. For a direct comparison of Dahlin’s controller with Gyg,
see Yogel (1982). Note that both Gy and Gy eliminate offset,
since the closed-loop transfer function has a steady-state gain of
unity. There are cases when G, gives sluggish or inadequate
performance, requiring modification of the algorithm (McDer-
mott and Mellichamp, 1983). However, the controller calcu-
lation in Eq. 88 is analytical in form and does not require
solution of simultaneous equations, in contrast to other pole
placement controllers.

Applications of pole placement controllers

The number of applications of pole placement adaptive con-
trollers relative to those of the self-tuning controllers discussed
earlier is small. Very little large-scale experimental or commer-
cial testing has been reported at this time, with most experimen-
tal work carried on a laboratory or pilot scale. Commercial
applications have been discussed by Corripio and Tompkins
(1981), Proudfoot (1983) and Hoopes et al, (1983). Table 3 lists
applications classified relative to type, denoting the nature of
the test (simulated or experimental).

Multivariable self-tuning controller design based
on pole placement

Prager and Wellstead (1980) developed a self-tuning regula-
tor for multivariable systems based on pole placement. The mul-
tivariable controller development and application procedure are
analogous to that for the SISO pole placement algorithm. The
multivariable process model is given by Eq. 21. The multivari-
able pole placement controller has the form [for 7:(1) = 0]

u(1) = GFy(r) (89)

where the controller polynomial matrices G and F are defined
as

Fg)=I+Fg'+...+Fg"
Gg =G +Gg+ .- +Gg™

With the controller given by Eq. 89, the closed-loop relationship
is
y()) = FLAF — q™*BG]™' C¥(1) (90)

Table 3. Applications of Pole Placement Adaptive Controllers

Absorption/Desorption
Risti¢ et al. (1983) (e)

Boiler
Hoopes et al. (1983) (e)

Chemical Reactor
Koutchockali et al. (1984 (e)
Kwalik and Schork

(1985) (s)

McDermott and Mellichamp
(1983, 1984a, 1984b) (s)
and (e)

Touchstone and Corripio
(1977) (s)

Distillation Column
Gerry et al. (1983) (¢)
Vogel (1982) (s)

Furnace
Corripio and Tompkins
(1981) (e)

Heat Exchanger and Heating
Systems
Vogel (1982) (e)
Moghtader and Warwick
(1983) (e)
Moghtader et al. (1984) (e)

Liquid Level
Prager and Wellstead (1980)

(e)
Wellstead et al. (1979) (e)

pH Control
Proudfoot (1983) (e)

(s) simulated
(e) experimental
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The controller matrices Fand G are selected so that the closed-
loop poles correspond to those specified by the polynomial
matrix 7, where

T(@)=I+Tg'+.--+Tyg™" 91)

The closed-loop poles are selected to give appropriate damping
characteristics but are usually application-specific. Thus, F and
G are determined by solving the following set of simultaneous
equations.

AF - ¢ *BG=-CT 92)

Witk F and G determined as above, the closed-loop transfer
function is

() = FT-§(2) (93)

The c;ontro] law, Eq. 89, is implemented as follows:
Fru(r) = G*(1) (94)

Where F* and G* have the same form as Fand G, respectively,
and are determined from

F*G -~ G*F (95)

Equation 95 also yields a set of simultaneous equations.

The features of the multivariable pole placement controller
are similar to those of the SISO pole placement controller. The
multivariable controller is not sensitive to norminimum-phase
processes and it may be detuned to avoid excessive control
action. The controller also provides dead time compensation and
allows for different time delays between the input-output combi-
nations and allows for variable time delays. Both of these desir-
able features are obtained by increasing the order of the poly-
nomial matrix B(¢™'). Note that this similarly increases the
order for all of the polynomials represented by B(g™!), so it is
analogous to the approach used with the SISO pole placement
controller (see the preceding section on the Vogel-Edgar con-
troller).

Prager and Wellstead (1980) have suggested that it is good
practice to incorporate integrators in each control loop. While
this ensures zero offset, the controller is not particularly well-
suited for servo control, because this design procedure does not
necessarily lead to a controller that decouples the interactions
between the input-output pairs. Further, frequent set-point
changes tend to detune the controller.

Implementation of the multivariable pole placement con-
troller as a self-tuning controller requires the following steps
each iteration: e

1. Estimation of the model parameters in Eq. 89.

2. Calculation of the controller parameters from Egs. 92
and 95.

3. Calculation of the control action from Eq. 94.

The procedure is often simplified by setting C(g™") = 1. How-
ever, this explicit algorithm has the significant disadvantage
that the controller design calculations are likely to require a con-
siderable amount of computation time, since they involve the
solution of two sets of simultaneous equations each iteration.
Since the order of the expanded B polynomial depends on the
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process dead time, the algorithm is especially not attractive for
processes with large dead times.

One of the disadvantages of the design procedure of Well-
stead et al.’s technique is the estimation of many unnecessary
model parameters, since the order of the B(g~') polynomials
must be selected large enongh to include the ranges of all of the
process delays. In contrast, Vogel and Edgar (1982b) developed
an algorithm in which the number of parameters in each ele-
ment of B(¢~") depends only on the expected range for the dead
time of that element. Thus their mode] has the advantage that it
is likely to require estimation of fewer parameters compared to
the model used by Wellstead et al. (1979).

For application with the Vogel-Edgar multivariable dead
time compensator, Gy, the process model is as follows:

y(0) = G(g~HU() (96)

where

G(g™') = A7'(g™")B(g™")

and A(g™') and B(g~") are defined in Eq. 20.

In analogy with the approach used with multivariable dead-
time compensators (Ogunnaike and Ray, 1979), a process
model without delays, G,(g™"), is obtained from G(g~') by
replacing each element of B(g~") by the corresponding sum of
the coefficients in each element of B(g~'). Thus the process
model without delays is

7

(@) = G, (g7)u(?) (98)
where G,(g™") is given by
Gi(g7') = A7 (g7 ")ZB(g™) (99)

A(g™") is defined as in Eq. 22 and the elements of =B(g™") are
defined as

(100)

2_Byg™) = (ZJ: bi’) g

21
The closed-loop transfer function for the MIMO system is

(1) = GG Ty, (1) (101)
where 7(g™") is a diagonal matrix selected to reduce interac-
tions between the input-output pairs. The components of T, are

(1 = e&ayg!

Tlﬂ o 1-— e_A;/,ﬂq..l

(102)

where 7,; is a tuning parameter that determines the response
time of each loop. The solution for G,z to achieve the desired
response in Eq. 101 is

Gy = (G, — FG|'F (103)
This algorithm does not require the simultaneous solution of
many equations to synthesize the controller and only needs to

invert an N x N matrix (Eq. 103) at each time step, where N is
the dimension of y and «.

AIChE Journal



The above muitivariable adaptive controller/dead-time com-
pensator is analogous to the SISO algorithm G,; discussed ear-
lier, and has similar properties: explicit algorithm with direct
controller updating (no controller design calculations), on-line
tuning parameter for each input-output pair, stable with non-
minimum-phase processes (requiring no detuning), and servo
design based on pole-zero placement with integral action. Addi-
tionally, the multivariable algorithm allows for different time
delays between the input-output combinations. This feature
does not increase the complexity of the algorithm or the number
of process model parameters that must be estimated. Simulation
results by Vogel (1982) and Kwalik and Schork (1985) have
shown that the MIMO controller does perform satisfactorily for
most operating conditions.

Recently McDermott (1984), and McDermott et al. (1984c)
have reported a pole placement algorithm that incorporates the
best features from the Wellstead-Prager and Vogel-Edgar ap-
proaches and successfully treats unstable as well as nonmini-
mum processes. The main improvement arises from on-line
optimization of the closed-loop poles to adjust the closed-loop
response and account for inexact decoupling of the true process.
As in Vogel and Edgar’s approach, static decoupling is achieved
in this algorithm, and a least squares approximation to dynamic
decoupling is realized. McDermott and Mellichamp (1984b)
reported a successful experimental application of this MIMO
self-tuner for a packed-bed reactor.

The connection between the MIMO minimum variance and
pole placement algorithms has recently been explored by Du-
gard et al. (1984) and Elliott and Wolovich (1984). Using the
interactor matrix approach for describing the MIMO system,
Elliott and Wolovich have shown that an indirect adaptive con-
trol strategy can be used with plant data, while some difficulties
arise with the direct methods. They also have explored ways to
reduce the size of the parameter estimation problem for MIMO
systems.

Stable Adaptive Control

In concept, the design of an adaptive system is simple. A very
natural approach is to combine a particular parameter estima-
tion technique (e.g., recursive least squares, projection type esti-
mation algorithms—see the parameter estimation law, below)
with a control law (dead-beat, pole-placement algorithm, etc.).
In this manner one can generate a large number of algorithms,
depending upon the specific combination of estimation and con-
trol laws used. In the present section the focus of attention is
those combinations of estimation and control laws that are moti-
vated by a stability requirement and therefore have proven con-
vergence and stability properties. Specifically, this section ex-
plains the main stability resuits of a particular combination of
parameter estimation and control law.

Within the past several years there have been a number of
important results contributing to the previously unresolved issue
of global stability of adaptive control systems. The key question
concerning stability of adaptive systems is how to ensure that
the regressor or the input-output vector, y(- ), consisting of pres-
ent and past values of plant inputs and outputs, remains
bounded or finite at all times. This problem proved elusive until
the late 1970’s. One of the first important results on stability of
adaptive systems was due to Monopoli (1974). His scheme
claimed to show stability of an augmented error-based algo-
rithm by using Lyapunov’s stability criterion. The idea of an
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augmented signal as introduced by Monopoli to avoid differen-
tiation of certain signals in the adaptive control algorithm, has
proved to be important and is an essential element of any adap-
tive system for which global stability can be assured. At the
present time, it is still not known if Monopoli’s algorithm guar-
antees stability except for the special case where only one pro-
cess model parameter is to be estimated (Feuer and Morse,
1978).

An important step forward was made when Goodwin et al.
(1978a) showed that a relatively simple adaptive algorithm
applicable to MIMO discrete-time systems would provide global
stability. Egardt (1979a, b) also proposed an adaptive algorithm
with a rather complicated and technically involved proof of sta-
bility. The work of many other authors has also contributed sig-
nificantly to the overall question of stability of adaptive systems:
Morse (1980), Fuchs (1980), Narendra and Lin (1980), Mar-
tin-Sanchez et al. (1981), Peterson and Narendra (1982),
Elliott (1982), Elliott and Wolovich (1982), Martin-Sanchez
(1984), Kreisselmeier and Narendra (1982), and Samson
(1983).

In the different adaptive schemes proposed by these authors,
the choice of the parameter estimation law is the key step and is
mainly motivated by stability and convergence analysis. The
results reported by these authors show that the regressor vector,
¥(-), is bounded (thus proving stability) and simultaneously
establish convergence properties for the parameters and asymp-
totic convergence (in the deterministic case) of the control error
to zero.

There are several reasons for looking at the problem of stabil-
ity and convergence of adaptive algorithms. First, a convergence
and stability result helps distinguish between good and bad algo-
rithms. Second, such a result identifies the important ingre-
dients of a stable algorithm and thus helps to suggest ways in
which an algorithm might be improved. Last, although the proof
of stability of such algorithms is only valid under ideal condi-
tions, such a result does give some credibility to the algorithm.
An excellent overview of the current status of convergence the-
ory for adaptive systems has been given by Goodwin et al.
(1984) as well as other recent articles in the Automatica (Sept.
1984) special issue on adaptive control.

Model reference adaptive control

Historically, the first attempts in the design of stable adaptive
systems were in the area of model reference adaptive control
(MRAC) systems design. In MRAC the basic objective is to
make the output of an unknown plant asymptotically approach
that of a given reference model. The model reference idea was
originally proposed by Whitaker et al. (1958) and was further
developed by Parks (1966), Monopoli (1974), and Landau
(1974). The book by Landau (1979) provides a comprehensive
account of work in this area up to 1977. More recent develop-
ments in this area have been reviewed by Narendra and Peter-
son (1980) and in various papers available in the proceedings of
the 1979, 1981, 1983, and 1985 Yale workshops on adaptive sys-
tems.

During the 1970’s much of the earlier focus on stable adaptive
systems was based on the MRAC system formulation (Landau,
1974; Monopoli, 1974), using the stability methods of Lyapunov
or the hyperstability criterion of Popov. Many of these results
showed asymptotic convergence of the plant output to the refer-
ence model output. However, the key stability question of
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boundedness of the input and output vector was not addressed
properly (Johnstone and Anderson, 1982) and remained unre-
solved until relatively recently.

Many of the earlier MRAC results were based on the state-
space formulation and required knowledge of the state-space
model and measurements of all the state variables (Parks,
1966). Subsequent methods still based on the state-space
approach were concerned with unknown processes and their
identification, state estimation via adaptive observers, and con-
trol (Landau, 1979). However, from a practical point of view the
adaptive control problem based on input-output signals is intui-
tively more appealing and has proved to be the main focus of
interest in the design of stable MRAC controllers (Narendra
and Valvani, 1979).

One possible control configuration under the MRAC philoso-
phy is shown in Figure 5. Note that the particular control con-
figuration in this figure corresponds to a direct MRAC system.
The input and output of an unknown, linear, time-invariant
plant are u(-) and y(-), respectively. A reference model repre-
senting the desired behavior and a reference or set-point trajec-
tory y,(-) are specified, which result in a model output y,,(-).
From all the available data it is desired to adjust the feedback
and feedforward control parameters such that the error [e(t) =
¥(2) — y.(0)], tends to zero asymptotically. The key technical
problem is to determine the structure of the adjustment mecha-
nism such that the overall system is globally stable, i.e., the plant

input, u(¢), and output, y(r), remain bounded for all 7 and the:

error, (), goes to zero as ¢ — . This problem of showing global
stability is a nontrivial one. It remained an open question for
many years but was finally resolved in the late 1970’s by inde-
pendent work on this and related problems by Egardt (1979b),
Goodwin et al (1978a, b), Narendra and Valavani (1978),
Fuchs (1980), and Narendra and Lin (1980).

The results of Morse (1980) and Goodwin et al. (1978a)
among others, although based on non-MRAC adaptive control-
lers, are important in the context of MRAC stability since the

Reference Y
Model

Process

K
?

Acaptive
Mechanism e

Figure 5. Typical configuration of a direct MRAC system.
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MRAC control problem fits naturally within the general frame-
work of their stability analysis—i.e., the MRAC problem can
easily be cast into a form suitable for stability analysis using
their results. It has also been shown by several authors (Ljung
and Landau (1978), Bgardt (1979a, b). Astrom (1980a), John-
son (1979), Shah and Fisher (1980)), that many of the MRAC
and STR type schemes are similar either by being special cases
of one algorithm or by giving rise to identical error equations.

Model reference adaptive controller design

The plant to be controlled is assumed to be representable by
the following deterministic ARMA (auto-regressive, moving av-
erage) model:

A(g" () = g*B(g™"u(?) (104)

where A(-) and B(-) are polynomials of order » and m, respec-
tively, in the backward shift operator as defined in Eq. 2. A ref-
erence model represents the behavior desired from the plant
when it is augmented with a suitable controller. The reference
model input, y,(2), is tracked by the output, ¥,,(1), in the follow-
ing manner:

E(@ " Wn(®) = g *H(g ")y, (?) (105)

where E(-) and H(-) are user-specified polynomials of order p.
Defining the relationship

E(g™") = F(g)A(g™") + g7*G(g™") (106)

where F(-) and G(-) are unique polynomials of order £ + 1 and
n + 1, respectively, and combining it with Eq. 104 allows y(-) to
be expressed in a predictive form as:

E(g)y(1) = ¢7*G(g7 " )y(t) + g *F(g™")B(g™")u(z) (107)

If y(-) is to be equal t0 y,,(-), then the lefthand sides of Egs. 105
and 107 must be equal. This gives the control law:

G(g™"w() + F(g~)B(g™)u(r) = H(g")y.(r) (108)

This control law will ensure that the process output will track
the reference model output. To make this contro! law adaptive,
one simply needs to replace the true values of the parameters in
the control law by their estimated values. The predictor, Eq.
107, can be used to estimate coefficients of polynomials G and
FB, and these estimated parameters can then be used to calcu-
late u(#) in Eq. 108. A number of different algorithms can be
used to estimate the parameters in Eq. 107. However, one of the
simplest algorithms is the following gradient scheme whose con-
vergence properties have been studied using a Lyapunov-type
analysis (Goodwin et al., 1980).

B(r) =6t - 1)

_ Y- 1)
TCE V- D - 1)

a()) = ¥t = DBt - 1)]  (109)
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where

Y- 1)"= [yt - k),... 0t - k- n),
u(t — k), ...u(t — k — m)]
Yo(t) = E(z""y(t) and C>0.

The complete proof of convergence is omitted here for the
sake of brevity. For details regarding the proof the reader is
referred to Goodwin and Sin (1984). It should be noted here that
the MRAC controller can also be interpreted as a special case of
the adaptive pole placement controller if A,,(z~') in Egs. 66 and
73 is chosen as E(z™!).

Applications of MRAC systems

Several applications of model reference adaptive control sys-
tems have been reported in the literature, Most of these have
been summarized in the extensive literature review on applica-
tions of adaptive control by Parks et al. (1980). A majority of
these applications are in the electromechanical area, for exam-
ple in control of a DC-drive system, and for tracking an optical
telescope. Two notable applications of MRAC techniques in
chemical process control area have been on a pilot-scale double-
effect evaporator (Oliver et al, 1974) and on a packed-bed tubu-
lar reactor (Tremblay and Wright, 1977). Several newer appli-
cations of model reference adaptive control have also been
reported in the recent proceedings of the IFAC workshop on
Adaptive Control (1983) and the Proceedings of the Yale work-
shop on applications of Adaptive Systems Theory (1979, 1981,
1983, 1985). In general, the number of reported significant
applications of MRAC techniques is quite small, in fact, hardly
any at all in the process industries. Table 4 summarizes these
and other applications of model reference adaptive control.

A stable adaptive controller

The main focus of interest in this section is an overview of the
recent results on stability and convergence analysis of adaptive
systems. Our reference point will be the results of Goodwin et al.
(1980) for the deterministic case and Martin-Sanchez et al.

Table 4. Applications of Stable Adaptive Control Methods

MRAC Control Methods
Chemical Reactors Furnace
Tremblay and Wright (1977) Landau and Muller (1976)
Kputghqukali et al. (1983) Dahhou et al. (1983)
Kx](:;.;xssg;dw and Shah Heat Exchangers :
Dochain and Bastin (1984) il niih R
Cluett et al. (1982) Liquid Levels
Distillation Columns WAL B
Wiemer et al. (1983) pH Control
Martin-Sanchez and Shah Rodellar and Martin-
(1984) Sanchez (1980)
Evaporator Ufility Systems (Power Sta-
Oliver et al. (1974) tions
Elicabe and Meira (1983) Irving and Dang Van Mien
Song et al. (1983a,b) (1979)
Irving et al. (1979)
Kalnitsky and Mabius
(1979)
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(1981) for the more general stochastic case, which includes
external noise and unmeasured disturbances. For simplicity and
clarity in explanation, the algorithm and stability analysis will
be illustrated by application to a SISO system.

The design of a stable adaptive control law is based on the
assumption that the physical process to be controlled can be
described by the following stable-inverse or minimum-phase,
discrete, ARMA model:

y@) =65y -1) (110)
where 6, is the process parameter vector, i.e., 03 = [a}, a5, . . .,
a,, b, b, ...];and ¢(-) is the process input-output vector, Eq. 3.
Now we define the one-step-ahead control or tracking error as

e+ )=y, @+ -pt+1)

=yt +1) - 6¢¥() @a11)

By choosing u(t) [one of the elements of y/(1)] to satisfy the fol-
lowing equation

G () =y (t+1) (112)

it is clear that the control or tracking error will be identically
zero. However, since 8, is unknown we replace it by an estimate
6(1),1e.

BT () = y,(r + 1) (113)

6(r) can be obtained from a recursive parameter estimation
law. '

Parameter estimation law

The following parameter estimation law is proposed for the
adaptive algorithm. This is a slightly modified form of the gra-
dient algorithm, Eq. 109. Its choice has been motivated by the
stability and convergence analysis:

a(y(r — 1)
1+a(@y( - 1)Ye-~1)
- Iy - 8@ - DT~ 1)] (114)

) =0¢-1 +

where a(?) is a finite, nonnegative, user-selected parameter that
determines the speed of convergence.

The parameter estimation law plays a crucial role in deter-
mining the stability of the overall system and is one of the key
components of an adaptive system. This parameter update law is
also a particular case of the general form of the recursive esti-
mation law expressed in words early in this paper.

The structural form of the above estimation law is simple, and
the choice of the algorithm gain, a(£)/1 + a(f)¥(z — 1)7Y (1 —
1), to correspond to one of the bracketed terms of the general
recursive estimation law in a stability-based adaptive algorithm
is usually motivated by the requirement of global stability of the
overall system. The particular form of estimation law, Eq. 114,
used in the illustration here is known as a projection algorithm
and can be interpreted geometrically as follows: The new esti-
mate A(z — 1) is an orthogonal projection of 8(f ~ 1) onto the
hypersurface y(f) — 6"y(1 — 1) = 0. Note that the choice of
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objective error in this algorithm implies that for the algorithm to
converge it is not necessary for 8(f) to converge to 6 i.e.,
¥(t — 1) can be orthogonal to [f, — 8(z — 1)].

Many other algorithms, e.g., the orthogonalized projection
algorithm or the least squares algorithm, can be cast into the
above basic structure and hence be used in a stability-based
adaptive algorithm (Goodwin and Sin, 1984). Each algorithm
has different convergence properties and the choice depends on
the particular environment in which it is used. In fact the reader
should be aware of the importance of problem-specific modifica-
tions to the basic algorithm to improve its performance.

Stability

The key requirement in the proof of global stability of the
deterministic adaptive system is to show that the process input
and output valves of an unknown plant with a particular estima-
tion and control law, remain bounded for all vaiues of 7, and fur-
thermore that the tracking or control error e(f) — 0 as t — .
The following simplified statement of the stability theorem sum-
marizes the key stability issues applicable to adaptive systems.

Theorem
Subject to the following assumptions:

a. An upper bound on the order of ARMA representation of
the process, i.e., 7 and m are known.

b. The process delay, k, is known.

¢. The unknown process is minimum-phase, i.e., it has a sta-
ble inverse.

Then the following properties are true if the estimation law,
Eq. 114, is combined with the control law, Eq. 113, and applied
to an unknown process, Eq. 110:

@ [ <= V¢, i.e., for a bounded reference input, y,(-),
the input-output or the regressor vector is always bounded. (Sta-
bility is assured.)

(i) lim,.. e(#) = lim—. [y(?) — y,()] =0

(asymptotic tracking property)

The first property is obtained from the assumption of a stable-
invertible or minimum-phase system and is a key technical
lemma due to Goodwin et al. (1980). One interesting result in
showing property (i) is the following convergence result:

18() — 6] = [B(r — 1) - 8]

This result shows that the Euclidean norm of the parameter
estimation error vector is a bounded nonincreasing function.
Note that it is not proved or claimed that 8(¢) converges to 6.
The system properties assumed here with the estimation and
control laws are enough to ensure global stability and asymp-
totic tracking, and true parameter convergence is not required.
(In order to establish parameter convergence, if this is at all
required—e.g., in adaptive filtering algorithms—one needs to
impose the condition of persistent excitation on the control input
signal).

To date, the stability of various classes of adaptive algorithms
based on one-step-ahead or predictive control and model refer-
ence adaptive control, as described above, has been established.
However, one of the unresolved problems on the issue of the
stability of adaptive systems is the design of a globally stable
controller for pole-positioning. The difficulty in showing global
stability of pole-positioning is usually one of checking if the esti-
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mated plant numerator and denominator polynomiais have any
comon factors, i.e., if 4(Z') and B(Z') are relatively prime, and if
these are true parameters, then coping with the problem of an
uncontrollable and/or nonstabilizable plant. This difficuity can
be resolved if it can be shown that the estimated plant parame-
ters can converge to their true values. True parameters conver-
gence has been established by applying an external set-point
perturbation or a persistently exciting set-point signal to the
plant (Anderson and Johnson, 1982). The remaining difficulty
in the proof of giobal stability of adaptive pole-positioning algo-
rithms is to then show boundedness of the system variables inde-
pendent of parameter convergence.

Stable adaptive control in the presence
of noise and disturbances

The above stability result for deterministic systems is of great
significance, but from an application point of view it is lacking in
realistic assumptions, such as the existence of noise and unmea-
sured disturbances acting on the system. The overall stability of
a minimum-phase process in the presence of bounded unmeas-
ured disturbances and noise has been shown by Martin-Sanchez
et al. (1981). No a priori information other than boundedness of
these (disturbance and noise) signals is assumed and therefore
their result is applicable to stochastic systems. This result is
based on a novel discrete-time representation of the process and
leads to a stability analysis using the same projection estimation
algorithm as in Eq. 114, but with special criteria for setting val-
ues of the adaptation gain a(?).

Shorter and more direct proofs of analogous stability results
have been obtained both for continuous (Peterson and Naren-
dra, 1982) and discrete (Samson, 1983) systems, but these
proofs also suffer from a condition on the a priori estimate of a
process parameter. All of these latter results (Egardt, 1979a,
Peterson and Narendra, 1982; Samson, 1983) have considered
criteria for continuing or stopping parameter adaptation. They
also use as a main argument in their proofs the boundedness of
the rate of change of the system input-output signals.

A process with external noise and disturbances can be repre-
sented by

y(O) = 6p(t — 1) + A (115)
where A(-) is the “perturbation,” to account for the effect of
such variables as bounded unmeasured disturbances plus pro-
cess and measurement noise on the system output. Since the
only assumption on A(-) is that it be bounded, the process model
represented by Eq. 115 is very general and can be applied to a
broad class of industrial processes. For this case the control law
is identical to Eq. 113. However, the provision for incremental
control is available should it be necessary to remove the offset in
the control error in the presence of constant or sustained distur-
bances. The estimation law is identical to Eq. 114, but the adap-
tation gain, «(?), is chosen (in the simplest case) according to the
following criterion:

Lif [p(1) — 8(e — DTz - 1) > 24,
(adaptation on)

a(f) ={ where A, is the user specified (116)
upper bound on A
0 otherwise (adaptation off)
AIChE Journal



Such a criterion to stop parameter adaptation when the pre-
diction error is small is a necessary part of the stability proof
{Martin-Sanchez et al., 1981) and appears to be reasonable and
intuitive, Note that for the algorithm to converge it is not neces-
sary for 6(t) to converge to ,. In fact with the dead zone feature
in the estimation law (Eqgs. 114 and 116), only as much conver-
gence of 6(0) to (2) is required as is necessary to cause the | pre-
diction error| < 24,,. Once this occurs adaptation stops and is
restarted only if this latter condition is violated.

Implementation of the adaptive algorithm

To implement the specific algorithms discussed here the fol-
lowing computations have to be carried in the order indicated:

Step 1. Measure current process output, y(f), and formulate
(t — 1). Compute control error e(f) and the a priori prediction
error

e(t|t — 1) = y(1) — p(t]t — 1) = (1) - 8(t — 1)z - 1).

Step 2. Compute the new parameter estimation vector 8(r)
using Bq. 114 with or without Eq. 116.

Step 3. Knowing the desired set point y,(f + 1) at the next
step, calculate the current control input signal, #(#) from Eq.
113. Repeat Steps 1 to 3 at each sampling instance.

The performance of such an algorithm (Eq. 114 with Eq. 116)
is illustrated by considering the experimental application of this
algorithm to the composition control of a binary distillation
column. Figure 6 shows the performance of this algorithm in
comparison to that of a well-tuned PI controller. Additional
details and resuits of other SISO and MIMO adaptive predic-
tive control runs on the same distillation column are given in a
recent paper by Martin-Sanchez and Shah (1984).

Applications

Most applications of such stability-based adaptive algorithms
have been at universities; only a few have been actual experi-
mental evaluations, usually involving pilot-plant units. An early
application by Martin-Sanchez (1977, 1984) involved experi-
mental evaluation of a multivariable adaptive predictive control
strategy on a pilot-scale distillation column. Other applications
of the same stratsgy included control of pH in a simulated pro-
cess (Rodellar and Martin-Sanchez, 1980), and batch polymer
reactor applications (Kiparissides and Shah, 1983; Cluett et al.,
1982). Illustrative laboratory applications of many of these
algorithms have been reported in the textbook by Goodwin and
Sin (1984). Goodwin et al. (1982b) have also applied such algo-
rithms on a simulation basis for wastewater treatment and pH
neutralization. A summary of these as well as more recent appli-
cations of suct stable adaptive controllers is outlined in Table
4.

Some unresolved problems

The question of overall stability and convergence of a stochas-
tic self-tuning regulator was resolved by Goodwin et al. (1981).
The analysis of stochastic time-varying systems remains an open
problem.

Much of the current theory of adaptive systems relies on the
assumption that the plant or process to be controlled can be rep-
resented by some member of a family of linear, finite-dimen-
sional parametric models. Since few plants are truly of finite
order and linear, modeling errors due to unmodeled plant
dynamics and nonlinearities are invariably present. Currently,
efforts are underway to show and improve the robustness of
adaptive systems when operating under such nonideal conditions
(Kosut and Johnson, 1984; Ioannou and Kokotovic, 1984).
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Figure 6. SISO adaptive predictive control of the top composition of a binary distillation column.
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Miscellaneous Forms of Adaptive Control

Apart from the most popular forms of adaptive control meth-
ods presented in the earlier sections, there are several other con-
trol design techniques that may be classified as adaptive systems
according to the definition of adaptive control stated in the
introduction. Some of these are discussed briefly in the following
two sections.

Adaptive control via pattern recognition

Pattern recognition can be used as an alternative to identifica-
tion in adaptive control. Bristol (1977) has introduced a pattern
recognition scheme that is designed to monitor errors between a
controlled plant and its reduced order model and to adaptively
“infer” or attribute the cause of these residual errors to, e.g.,
unmeasured disturbances entering the plant. The identification
of particular types of transient terms in the plant output or
residual errors through specified logic filters, i.e., by pattern rec-
ognition, is then used to take the appropriate corrective action.
However, the design of a pattern recognition scheme appears to
be problem-specific and would require considerable a priori
information on the process characteristics.

In 1984 Foxboro announced the availability of a self-tuning
PID controller that is based on a so-called expert system
approach for adjustment of controller parameters; i.e., the con-
troller in its adaptive state uses many knowledge-based rules
built upon tuning observations and tables (Kraus and Myron,
1984). The on-line tuning of X, 7;, and 7 is based on the closed-
loop transient response to a step change in set point. By evaluat-
ing the salient characteristics of the response (e.g., the decay
ratio, overshoot, and closed-loop period), the controller parame-
ters can be updated without actually finding a new process mod-
el. The details of the algorithm, however, are proprietary.

Extremum adaptive control systems

For a class of (usually nonlinear) systems the relationship .

between the input and output has an extremum, a minimum or
maximum point—i.e., for a particular value of input the output
may have a maximum or minimum value, and it may be desired
to keep the output of a system operating at this extremum value.
For example, in the control of the air/fuel ratio for optimal com-
bustion there is an optimal setting for air flow (input) depending
on the fuel quality that results in the optimum combustion (out-
put). Such systems can be controlled by an adaptive extremum
strategy. The objective in adaptive extremum control systems is
to identify the extremum function and then adjust the control
input so that the output is at its extremum value. Such a class of
systems did attract attention in the 1960’s (Blackman, 1962;
Jacobs, 1969). In fact one of the first reported adaptive
schemes—the “MIT rule” of Whitaker et al. (1958)—can be
thought of as an extremal adaptive scheme in which the objec-
tive is to measure a performance function and minimize or max-
imize this objective function in the presence of changing process
gains. However, interest in such strategies diminished because
of lack of appropriate hardware for implementing them. With
the availability of microprocessors, such adaptive strategies are
being revived (Sternby, 1980).
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